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THE THREE TYPES OF BACKTESTS 

 

 

ABSTRACT 

 

Backtesting stands as a cornerstone technique in the development of systematic investment 

strategies, but its successful use is often compromised by methodological pitfalls and common 

biases. These shortcomings can lead to false discoveries and strategies that fail to perform out-of-

sample. This article provides practitioners with guidance on adopting more reliable backtesting 

techniques by reviewing the three principal types of backtests (walk-forward testing, the 

resampling method, and Monte Carlo simulations), detailing their unique challenges and benefits. 

Additionally, it discusses methods to enhance the quality of simulations and presents approaches 

to Sharpe ratio calculations which mitigate the negative consequences of running multiple trials. 

Thus, it aims to equip practitioners with the necessary tools to generate more accurate and 

dependable investment strategies. 

 

Three main takeaways: 

1. Practitioners can design better experiments by understanding the advantages and 

disadvantages of the three main types of backtesting. 

2. Practitioners can enhance backtest quality by avoiding methodological pitfalls and 

common biases. 

3. By understanding the importance of selection bias under multiple testing and how to run 

statistical tests, practitioners can improve the odds of making a true discovery. 
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A backtest simulates the performance of a systematic investment strategy, with the goal of 

assessing its expected risk and return going forward. It provides key evaluation metrics to 

determine the replicability of a discovered investment algorithm, and to understand the associated 

risk and return profile. However, backtesting is frequently misapplied; a lack of awareness about 

common pitfalls often results in overfitting, leading to the deployment of investment strategies that 

fail to perform well out-of-sample. 

In this article, we explore the nuances associated with conducting effective backtests, 

dividing our discussion into three main sections. First, we discuss the three principal types of 

backtests. Next, we address common pitfalls and provide guidance on how practitioners can 

improve the quality of their simulations. Finally, we examine the issue of selection bias under 

multiple testing and demonstrate how it contributes to overfitting. 

TYPES OF BACKTESTS 

There are three principal methods of conducting a backtest: walk-forward testing, 

resampling, and Monte Carlo simulations. 

The Walk-Forward Backtest 

The most widely used backtesting method is walk-forward testing, also referred to as 

historical backtesting, in which the strategy is assessed against a series of subsequently observed 

events and asset price moves from a past period. Though the application of this method might 

appear simple, inaccuracies in the setup and execution can lead to biased results. Even when all 

the potential pitfalls are circumvented, the walk-forward approach is still path dependent and 

assumes that the processes and events of the past repeat in the future. 

The main benefit of the walk-forward method is that the results and performance 

characteristics are easy to analyse, interpret, and compare between different periods. Additionally, 

it does not require the practitioner to identify an appropriate resampling technique, or the data 

generation process required by the other two backtesting methods. 

One of the principal limitations of the approach is that only a single path is tested, which 

raises the risk of overfitting (Bailey and Lopez de Prado 2014). Another shortcoming is that the 

observed past performance may not be indicative of future results since the underlying 

relationships that the strategy aims to exploit may not repeat. This leads to the critical observation 

that the walk-forward method, by definition, does not require practitioners to have a 

comprehensive understanding of the underlying processes or knowledge of the reasons for a 

strategy’s success or failure. Therefore, the obtained results could be based on erroneous 

assumptions.  

The Resampling Method 

The second type of backtest encompasses variations of the inferential statistics’ method 

known as resampling. As its names suggests, this method resamples past observations to construct 

new paths, thereby overcoming a primary drawback of the walk-forward approach. This method 

includes techniques such as cross-validation and bootstrapping. Cross-validation involves splitting 
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observations into groups and alternating between them for training and validation purposes, with 

methods including K-fold and combinatorial cross-validation, alongside the recommended 

practices of purging and embargo detailed by Lopez de Prado (2018). Bootstrapping, on the other 

hand, entails drawing observations from the sample at random using varying logic, multiple 

examples of which are covered by Musciotto et al. (2018). The assumption is that backtest 

outcomes across a spectrum of trajectories with different out-of-sample periods are indicative of a 

strategy’s future performance. 

The advantage of these methods is the availability of multiple paths to evaluate the strategy 

and check its robustness. Additionally, they yield a set of performance metrics rather than a single 

point, facilitating a more detailed analysis and comparison of strategies. Lastly, resampling 

methods are less prone to overfitting, as discussed by Lopez de Prado (2018). 

Nonetheless, certain disadvantages identified in the walk-forward method persist. For 

instance, the observed performance across multiple past paths may not accurately represent the 

future, and again, the method does not require a reasoned understanding of why the strategy works. 

An added difficulty associated with resampling is that some underlying data that the strategy uses 

may not be in a suitable format for the bootstrap approach, or it might require data to be segmented 

into longer periods to preserve the data’s time-dependence, which diminishes the number of groups 

and observed paths. 

Monte Carlo Simulations 

The third backtesting approach is the Monte Carlo method, which requires an 

understanding of the data generation process for its construction. This knowledge can be derived 

from theoretical constructs and causal relationships between the processes that the strategy aims 

to exploit, or through statistical analysis.  

The underlying assumption is that future paths can be modelled using Monte Carlo 

simulations. This approach enables the generation of additional data with properties resembling 

those observed in the real data, thereby providing researchers with a more solid foundation for 

analysis compared to the resampling method. Wiese et al. (2020) and Li et al. (2020) illustrate a 

data generation process using neural networks, which can subsequently be employed for strategy 

backtesting.1  

The main benefit of this method is that the observed performance is indeed indicative of 

future outcomes, provided the data generation process is unchanged and correct. To construct a 

backtest following this approach, it is necessary to understand why the strategy works, thereby 

addressing one of the main limitations inherent in the other two methods. Moreover, the risk of 

overfitting is mitigated when employing Monte Carlo simulations.  

In addition, during live trading, the statistical properties of the live data can be monitored 

and compared to the hypothesised data generation process, and the detection of a structural break 

 

1 For a more comprehensive exploration of the techniques involved and discussions of 

Monte Carlo backtests, see Lopez de Prado (2018) and Fabozzi et al. (2021). 
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could act as an early warning system to stop trading and prevent losses. In a situation where not 

enough data was initially available to evaluate a strategy, additional data can also be generated to 

reach the required confidence levels. 

The primary challenge of this method is the intricate task of creating an accurate data 

generation process for all the data sources utilised by the strategy. It may be difficult to replicate 

historical periods for extraordinary events like the 2008 financial crisis or the COVID-19 

pandemic; however, one can create several data-generation processes that include novel scenarios 

which have not appeared previously.  

ENHANCING THE QUALITY OF HISTORICAL SIMULATIONS 

In this section, we discuss how to increase the quality of a backtest by focusing on six areas 

known to present challenges, namely: data quality, data representativeness, statistical integrity, 

modelling and generalisation, costs and constraints, and performance evaluation.  

Data Quality 

Survivorship Bias: Survivorship bias is defined as a type of selection bias that occurs 

when analyses are conducted only on the data that have survived a selection process while ignoring 

those that did not. This bias can lead to skewed results and incorrect conclusions because the non-

surviving entities typically differ from the survivors in significant ways.  

The impact of survivorship bias is particularly pronounced in the analysis of mutual and 

hedge fund performances, as well as investment strategies. For example, including only those 

funds that are still active at the end of the period can significantly overestimate the average fund 

performance, as the worst-performing funds go out of business and are not reported on.2  

Point-in-Time Considerations and Restated Data: Point in time refers to ensuring that 

data used in analysis or backtesting is reflective of the information that would have been available 

to researchers at that specific point in time. This is particularly relevant in the case of restated data, 

which involves adjustments made to previously reported financial figures, such as earnings, 

revenue, or other financial metrics, due to errors, accounting changes, or compliance with new 

accounting standards. Restatements can significantly alter historical financial statements, affecting 

the accuracy of financial analysis and the models that rely on those statements. For practitioners, 

it is essential to manage restated data carefully; this often means using a point-in-time database to 

capture financial data as it was originally reported, without incorporating restatements or 

adjustments made after the fact. 

Incorrect and Missing Data: Incorrect data are any errors or inaccuracies in the dataset. 

These inaccuracies can stem from various sources, such as data entry errors, issues with data 

collection methods, or problems in data transmission. Before analysis, data should be thoroughly 

 

2 See Carhart (1997), Malkiel (1995), Brown et al. (1992), and Elton, Gruber, and Blake 

(1996). 
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cleaned, which involves checking for and correcting errors, ensuring consistency across datasets, 

and verifying data accuracy against reliable sources. 

Missing data occurs when information is absent from the dataset. This can happen for 

various reasons, such as system errors, data corruption, or when the data was never recorded or 

collected in the first place. Missing values can be imputed using assorted statistical techniques, 

such as mean imputation or regression imputation, or more sophisticated methods like multiple 

imputation or machine learning-based approaches. Depending on the context, forward filling may 

be a good option to avoid introducing additional complexity through imputation. In some cases, 

missing data can be augmented from alternative sources, although this approach requires careful 

consideration to ensure the compatibility and reliability of the augmented data. 

Dealing with Outliers: In the development of investment strategies, it is essential to 

evaluate the role of outliers – that is to say, extreme values that deviate significantly from the rest 

of the data. Strategies that capitalise on these rare occurrences might not be sustainable, as the 

outliers may represent unique, non-recurring events. Consequently, relying on such anomalies 

could lead to strategies that perform exceptionally well under specific conditions but fail to 

generalise across different market environments. 

When incorporating models that are inherently sensitive to outliers, such as linear 

regression, care must be given to the nature and impact of these extreme data points. Practitioners 

must ascertain whether outliers arise from errors in data collection or entry – such as misreported 

financial figures – or if they reflect genuine market phenomena that could offer valuable insights. 

Data Representativeness 

Sample period selection bias is the primary concern in the area of data representativeness. 

This type of bias occurs when the time frame chosen for a backtest inadvertently influences the 

results, leading to conclusions that may not be robust across different market conditions or time 

periods. When designing all-weather investment strategies (Lopez de Prado 2019), it is essential 

to include data from a wide range of market conditions rather than periods of optimal performance 

alone. This ensures the strategy's robustness across different market cycles. However, when 

creating tactical investment strategies, which, as Lopez de Prado (2019a) describes, are designed 

for specific market conditions, it may be more appropriate to select targeted time frames. The Min-

Track-Record-Length algorithm described by Bailey and Lopez de Prado (2012) can help 

determine the number of observations needed to validate a strategy's effectiveness across diverse 

market scenarios. 

Statistical Integrity 

Data Mining and Data Snooping: The concepts of data mining and data snooping refer 

to the process of searching through large datasets to identify patterns, relationships, and trends that 

can be used to develop investment strategies. This approach to strategy development should be 

avoided, as it very easily leads to selection bias through the improper application of data analysis 

techniques to uncover patterns in data that appear to be of statistical importance. Data snooping 

(p-value hacking) involves researchers repeatedly probing various subsets of data or conducting 
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numerous tests (potentially on the same data) until they achieve a result that seems meaningful 

(White 2000; Sullivan, Timmermann, and White 1999). 

Accounting for Selection Bias under Multiple Testing: Backtests need to account for 

the number of trials run and their statistics so that a discount measure can be applied to the 

performance metrics (Lopez de Prado 2018, 2020). This is covered in greater detail in the next 

section. 

Modelling and Generalisation 

Look-Ahead Bias: Look-ahead bias is the mistake of using data from the future as if it 

were point-in-time data to make investment decisions. We separate this from the problem of not 

using point-in-time data as we define it because of the research process. This approach can lead to 

inflated performance metrics and unrealistic expectations as to the profitability of investment 

strategies. 

Most typically, this mistake is made by not applying the appropriate lag to the indicators 

or signals. It also commonly occurs when computing statistics on the entire data sample rather than 

a rolling computation – for instance, using the entire sample when computing the mean and 

standard deviation of a z-score to normalise a signal. 

Introducing an Embargo Period: An embargo period is a hold-out sample of data, a test 

set, typically the most recent two to three years. Practitioners should fit models and make design 

choices regarding their trading strategies based on the in-sample period, and once the strategy is 

ready to be validated, the results can be produced for the embargo period. Any market anomaly 

that was exploited in the training set should also be present in the embargo period. 

Costs and Constraints 

An oft-overlooked step is the incorporation of trading costs and the constraints relating to 

short selling and liquidity. 

Transaction Costs: Neglecting to account for transaction costs leads to a higher false 

positive rate. Higher turnover strategies incur greater expenses, necessitating a more substantial 

return to be viable. Omitting these costs from an evaluation leads to inflated performance metrics. 

Borkovec and Heidle (2010) provide a good introduction to the types of costs and their 

impact on trading. Notably, they split costs into three types. The first, brokerage costs, are easily 

estimated using historical data and include commissions and fees; two examples of fees are 

custodial and transfer fees. The second, trading costs, consist of four components: delay costs, bid-

ask spread, market volatility/trend costs, and market impact. Finally, opportunity costs are the 

costs of not completing the full order. The authors highlight that market impact has the highest 

cost (and is difficult to model), whereas commissions and spread have the lowest effect and are 

easily estimated. Transaction costs can be estimated either empirically, using historical data, or 

analytically by attempting to build a model. 

Short-Sale Constraints: Another frequently overlooked cost is the cost of borrowing 

stocks to enable short selling. Estimating these costs can be challenging as brokers can group these 
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costs with other services (Saffi and Sigurdsson 2011). Additionally, as the demand for shorting 

rises, the availability of stocks to short decreases. During a financial crisis, several countries may 

restrict short selling, with some countries even imposing regulations such as the uptick rule 

(Boehmer, Jones, and Zhang 2013). Khan (2024) offers a comprehensive review paper on this 

topic. 

Liquidity Constraints: A backtest must take into consideration the liquidity of the 

instruments being traded. Typically, trading will be capped at some percentage of the daily average 

trading volume for each security. This constraint is imposed to ensure that the execution of trades 

will not significantly impact market prices. 

Universe Selection: Careful selection of an investment universe may help to limit the 

effects of both liquidity and short-sale availability; this may involve only trading assets with a 

market cap greater than $500 million, a median daily dollar volume greater than $5 million, a price 

greater than $6, and 500 days of price and volume data. 

Performance Evaluation 

Causal Graphs: The narrative fallacy involves a cognitive bias where practitioners create 

a story-like explanation for a series of events, often adding causality and meaning where there may 

be none. Events may be misinterpreted due to our innate desire to fit them into a familiar narrative 

structure. To combat this, Lopez de Prado (2023) and Lopez de Prado and Zoonekynd (2024) 

recommend that before running a single backtest, practitioners create a causal graph and an 

explanation of the sequence of events to describe the anomaly which is to be exploited for profit. 

Performance Metrics: A popular measure of the performance of a trading strategy is the 

Sharpe ratio (Sharpe 1966), defined as the ratio of expected excess return over the risk-free rate to 

its standard deviation: 

SR =
𝜇 − 𝑟𝑓

𝜎
(1) 

where µ = E(rt) is the expected return of a strategy or asset, rf is the risk-free rate, and σ is the 

standard deviation of returns. It thus expresses the return of a strategy per unit of risk. The 

unknown quantities µ and σ are estimated using realised information via, respectively, 𝑟‾ =

∑𝑡=1
𝑇  𝑟𝑡/T and 𝜎̂ = √

1

𝑇−1
 ∑𝑡=1

𝑇  (𝑟𝑡 − 𝑟‾)2, where T denotes the sample size. 

Although the formal definition of the Sharpe ratio is based on the notion of excess return, 

it is often reported under the implicit assumption that rf = 0. Also, the Sharpe ratio is usually 

reported in annualized terms. This involves rescaling the numerator and denominator of (1) 

accordingly (e.g., in the case of daily returns, the numerator is multiplied by 252 (trading days in 

a year) and the denominator by √252). 

The asymptotic distribution of the estimated Sharpe ratio has attracted considerable interest 

in the literature. Lo (2002), Mertens (2002), and Christie (2005) have derived the limiting 

distribution under the assumption of stationarity and ergodicity. The formula for the limiting 

variance derived by Mertens (2002) has been shown to hold when observations are not 
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independently and identically distributed Normal, see also Ledoit and Wolf (2008), Liu, Rekkas, 

and Wong (2012) and Qi, Rekkas, and Wong (2018) for higher-order accuracy. 

Asymptotically, the distribution of the estimated Sharpe ratio is given by: 

√𝑇(𝑆𝑅̂ − SR) →
𝑑

N (0,1 +
1

2
SR

2 − 𝛾3SR +
𝛾4 − 3

4
SR

2) (2) 

where N denotes a Normally distributed variate, 𝛾3 and 𝛾4 are, respectively, the raw third and fourth 

moments of returns. A feasible implementation of the result in expression (2) entails estimating 

the unknown quantities in the limiting variance by their sample counterparts. The Sharpe ratios of 

strategies that exhibit high excess kurtosis and/or negative skewness will be estimated with less 

precision. 

 Using the above results, Bailey and Lopez de Prado (2012) derived the Probabilistic Sharpe 

Ratio (PSR) as 

𝑃𝑆𝑅[𝑆𝑅∗] = Z [
(𝑆𝑅̂−𝑆𝑅∗)√𝑇−1

√1−𝛾̂3𝑆𝑅̂+
𝛾̂4−1

4
𝑆𝑅̂2 

]     (3) 

where 𝑍 is the CDF of the standard Normal distribution, 𝑆𝑅∗ is the value of the null hypothesis, 𝑇 

is the number of observations, 𝛾3 is the estimated skewness, and 𝛾4 is the estimated kurtosis. PSR 

allows researchers to express the Sharpe ratio in terms of the probability of observing performance 

statistically significant above a hurdle 𝑆𝑅∗, after correcting for the number of observations, 

skewness and kurtosis. PSR is particularly useful in the context of hedge funds, where returns often 

exhibit negative skewness and positive excess kurtosis, which result in inflated Sharpe ratios. 

Furthermore, Bailey and Lopez de Prado (2012) also introduced the Minimum Track Record 

Length (MinTRL) statistic as 

𝑀𝑖𝑛𝑇𝑅𝐿[𝑆𝑅∗] = 1 + (1 − 𝛾3𝑆𝑅̂ +
𝛾̂4−1

4
𝑆𝑅̂2) (

𝑍𝛼

𝑆𝑅̂−𝑆𝑅∗)
2

    (4) 

where Z𝛼 is the critical value associated with a significance level 𝛼. The MinTRL formula shows 

that a longer track record will be required the smaller 𝑆𝑅̂ is, or the more negatively skewed returns 

are, or the greater the fat tails, or the greater our required level of confidence. A first practical 

implication is that, if a track record is shorter than MinTRL, we do not have enough confidence 

that the observed 𝑆𝑅̂ is above the designated threshold 𝑆𝑅∗. A second practical implication is that 

a portfolio manager (PM) will be penalized because of her non-Normal returns, however the PM 

can regain the investor’s confidence over time (by extending the length of her track record). 

Despite its widespread use as a performance measure, the Sharpe ratio has some well-

known limitations. Although it is suitable for liquid investments with Normal returns, it may be 

less so for highly non-Normal returns that involve the use of derivatives instruments with nonlinear 

payoffs. This has prompted practitioners to complement the information provided with measures 

that focus mostly on the left tail of the distribution of returns. Notable examples are: 

1. Maximum drawdown, calculated as: 
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max
𝜏∈(0,𝜏)

[ 
max

𝑡∈(0,𝜏)
  𝑋𝑡−𝑋𝜏

max
𝑡∈(0,𝜏)

 𝑋𝑡
]       (5) 

 

where 𝑋𝑡 is the current value of the investment. 

2. The Value at Risk (VaR) at level α (typically 5% or 1%), often reported for regulatory 

purposes and defined as: 

 

𝑉𝑎𝑅𝛼(𝑋)  =  𝑀𝑖𝑛(𝑐 ∶  𝑃(𝑋 ≤  𝑐)  ≥  𝛼)     (6) 

for a random variable X representing losses. 

3. Conditional value at risk (cVaR) at level α, calculated as follows: 

 

𝑐𝑉𝑎𝑅𝛼(𝑋)  =  𝐸(𝑋|𝑋 ≥  𝑉𝑎𝑅𝛼(𝑋))         (7) 

4. The Calmar ratio, calculated as the ratio between average annualized return and 

maximum drawdown 

5. The Sortino ratio, the ratio between average return and downside deviation (i.e., the 

standard deviation of negative returns) 

To mitigate the pitfalls associated with the Sharpe ratio in the context of highly non-Normal 

returns, Favre and Galeano (2002) and Gregoriou and Gueyie (2003) have proposed the modified 

Sharpe ratio, where the denominator in equation (1) is substituted by VaRα. A test comparing the 

modified Sharpe ratios of two strategies has been developed by Ardia and Boudt (2015). 

Holistic Evaluation of Metrics: Performance analysis, much like the analysis of financial 

accounting ratios, needs to be conducted holistically, highlighting that several performance metrics 

need to be considered, in combination to make an informed decision. A typical example of ignoring 

this principle would be to only look at annualized returns, without considering risk-adjusted returns 

or drawdowns/time-under-water.  

Peer Review: An independent peer review process may further improve the likelihood of 

discovering a true positive as reviewers check the source code for bugs, validate claims made by 

researchers, and critique the methodology used. The reviewers may also run statistical tests to 

confirm that the true Sharpe ratio is statistically significant, while controlling for multiple testing 

(Bailey and Lopez de Prado 2014; Harvey and Liu 2015). 
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SELECTION BIAS UNDER MULTIPLE TESTING  

In this section, we take a closer look at the dangers of selection bias under multiple testing 

(SBuMT) using the following numerical example. Suppose a researcher has finished their analysis 

and reported a “promising” trading strategy to the PM. The backtest shows an annualised Sharpe 

ratio of around 1, with an annualized realized volatility of around 15%. The backtest provides 

daily returns for the past 5 years as an output, thus the number of observations is 𝑇 = 5 × 252 =
1,260. 

The PM tries to assess how statistically significant this discovery is. They know that given 

the “true value” of the Sharpe ratio SR, a realized Sharpe ratio could be somewhere in the vicinity 

of the true value, with the probability defined by a Normal distribution (Bailey and Lopez de Prado 

2012) and the standard deviation given by: 

 

𝜎𝑆𝑅 = √
1

𝑇
(1 − 𝛾3𝑆𝑅 +

𝛾4 − 1

4
𝑆𝑅2)                                                (8) 

where: 

• 𝑇 is the number of observations 

• 𝛾3 is the skew of the distribution 

• 𝛾4 is the kurtosis of the distribution (for a Normal distribution 𝛾4 = 3)  

Based on this insight, the PM runs a standard statistical test of the reported value 𝑦 = 1 

against the null hypothesis that the true Sharpe ratio is actually 𝑆𝑅∗ = 0. To run the standard test, 

they need to calculate the cumulative probability:  

 

𝐹𝑌(𝑦) =  𝑃(𝑆𝑅 ≤  𝑦)                                                              (9) 

Assuming a Normal distribution of SR values and the distribution described by (8), they 

calculate the p-value of the test as 𝑝 = 𝐹𝑌(𝑦) = 0.02 and the annualized cut-off value 𝑆𝑅𝑐𝑢𝑡𝑜𝑓𝑓 =

 0.74. The reported SR is well above the cutoff value, and the p-value is below 0.05, meaning there 

is less than a 5% chance that the null hypothesis could produce this result. The PM can reject the 

null hypothesis with 95% confidence and accept the researcher’s report as a “new discovery”. 

However, there is a catch. The PM also learns that 10 different trials have been attempted 

and that the researcher has only reported the trials with the highest SR. This is a typical situation 

described by SBuMT. 

For illustrative purposes, Exhibit 1 shows the histograms obtained by running 10,000 

simulations. The histograms show the realized Sharpe ratios for three scenarios:  

1. Blue with expected SR = 0 

2. Amber with expected SR = 1 

3. Green with expected maximum SR of a sample of 10 trials with expected SR = 0  
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Exhibit 1: Distribution of Sharpe Ratios 

 

The mean of the green distribution is around SR = 0.7. This is quite close to the cut-off 

value of the standard 1-trial statistical test, which means that roughly half of the realized maximum 

SRs would be considered significant with the standard 1-trial statistical test.  

This shows how easy it is to find an apparently significant strategy among N random walks 

with zero mean. The green distribution is narrower than distributions under the 1-trial hypothesis, 

which tells us that it is not appropriate to use 𝜎𝑆𝑅  calculated by equation (8) to test the SR 

significance under a multiple-trial assumption. Note also that the distribution of expected 

maximum SRs deviates from Normal, but not drastically.  

The PM realizes that the standard test that was run previously is neither sufficient nor 

appropriate and that the reported Sharpe ratio should be tested against a different null hypothesis 

that takes these multiple trials into consideration. The new null hypothesis is that the reported 

Sharpe ratio is a maximum of K = 10 values obtained from zero-mean random independent trials. 

The cumulative distribution of interest for this test is then:  

  

𝐹𝑌(𝑦) =  𝑃(𝑀𝑎𝑥({𝑆𝑅𝑘}) ≤  𝑦) =  𝑃((𝑆𝑅1 < 𝑦), … , (𝑆𝑅𝐾 < 𝑦))                  (10) 

There are two main approaches the PM can take at this point. The first approach is to 

estimate the family-wise error rate (FWER) by correcting the significance level 𝛼. Assuming that 

the Sharpe ratios in the family of tests are independent, we can write: 

𝐹𝑌(𝑦)  =  𝑃(𝑀𝑎𝑥({𝑆𝑅𝑘}) ≤  𝑦) =  𝑃((𝑆𝑅1 < 𝑦), … , (𝑆𝑅𝐾 < 𝑦)) = ∏ 𝑃(𝑆𝑅𝑘 < 𝑦)
𝐾

𝑘=1
     (11) 

The null hypothesis is rejected when 𝐹𝑌(𝑦) < 1 − 𝛼, or equivalently when: 

∏ 𝑃(𝑆𝑅𝑘 < 𝑦)
𝐾

𝑘=1
< (1 − 𝛼𝑘)𝐾                                              (12) 
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We require that the Type 1 error rate be 𝛼 = 1 − 𝑐, i.e., that the test rejects the null 

hypothesis 𝛼𝑁 times on average if the null hypothesis is true. To achieve this goal, we need to 

adjust (correct) the error rate 𝛼𝑘 for each single test. The correction follows from 

1 − 𝛼 = (1 − 𝛼𝑘)𝐾                                                             (13) 

This leads to the Sidak correction (Sidak 1967): 

 

𝛼𝑘 = 1 − (1 − 𝛼)
1
𝐾                                                               (14) 

and a simpler approximation of it, the Bonferroni correction (Bonferroni 1936): 

 

𝛼𝑘 =
𝛼

𝐾
                                                                            (15) 

With these corrections, we aim to have less than a 5% chance of rejecting the null hypothesis after 

testing a group of K independent trials, where the null hypothesis is correct for each strategy.  

The Sidak correction leads the PM to a value of 𝛼𝑘 = 0.0051, which is greater than the p-

value of the single test performed on the best strategy, and the cut-off SR value is 1.15, which is 

above the reported Sharpe ratio of 1. These results mean that the PM cannot reject the null 

hypothesis under the multiple trial assumption, and they conclude that the SR is not statistically 

significant. See Lopez de Prado (2020) for further details. 

The second approach is to derive a more accurate control for FWER from Extreme Value 

Theory. The maximum value of the list of Gaussians 𝑌 =  𝑀𝑎𝑥(𝑋1, 𝑋2, . . . , 𝑋𝐾) has cumulative 

distribution given by:  

𝐹𝑌(𝑦) =  𝑃(𝑀𝑎𝑥({𝑋𝑘}) ≤  𝑦) =  ∏ 𝐹𝑋𝑘
(𝑦)

𝐾

𝑘=1
                                 (16) 

 

where 𝐹𝑋𝑘
(y) is the cumulative distribution function (CDF) of the process generating 𝑋𝑘. It can be 

shown that, under independent and identically distributed draws, the probability density function 

(PDF) is: 

 

𝑓𝑌(𝑦) =
𝜕

𝜕𝑦
𝐹𝑌(𝑦) = 𝐾 ϕ(𝑦)Z(𝑦)𝐾−1                                         (17) 

where 𝜙(.) is the PDF of the standard Normal distribution, and Z(. ) is the CDF of the standard 

Normal distribution (see Embrechts, Klüppelberg, and Mikosch 2013).  

This distribution’s first two moments can be calculated using numerical integration. If we 

assume that the SR values are drawn from a Normal distribution N(𝜂, 𝜎2), we can conclude that: 

𝐸[𝑌] = 𝜂 + 𝜎 ∫ 𝑦 𝑓𝑌(𝑦)𝑑𝑦
∞

−∞

                                                   (18) 

and 
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𝑆𝑡𝑑[𝑌] = 𝜎√∫ (𝑦 − 𝐸[𝑌])2 𝑓𝑌(𝑦)𝑑𝑦
∞

−∞

                                              (19) 

Applying Extreme Value Theory, Bailey et al. (2014) proved the False Strategy Theorem, 

namely that: 

𝐸[𝑌] ≈ 𝜂 + 𝜎(1 − 𝛾)Z−1 (1 −
1

𝐾
) + 𝜎𝛾Z−1 (1 −

1

𝐾𝑒
)                          (20) 

where K is the number of independent trials, and 𝛾 is the Euler-Mascheroni constant, 𝛾 =
0.577215665… Bailey and Lopez de Prado (2021) confirmed the accuracy of this approximation 

through Monte Carlo experiments. 

The PM tests the significance of SR = 1 against the hypothesis that the reported SR is the 

maximum SR of 10 zero-mean trials. The expected maximum SR is 0.69, and the p-value 

corresponding to SR = 1 is 0.88. The 95% confidence cut-off value is 1.12. The PM can therefore 

conclude that the reported SR is not significant, which contradicts the result of the initial standard 

SR significance test. 

 

Exhibit 2: Expected SR and 95th Percentile Cutoff Values vs Number of Trials 

 

To illustrate the effect of multiple trials on statistical testing and the performance of the 

different methodologies discussed above, we ran 10,000 simulations where, at each simulation 

step, we created 10 time series representing five years of daily returns (1,260 observations). All 

returns were drawn from a Normal distribution with a zero mean and an annualised volatility of 

15%. The SR was calculated for each strategy, and the best one was selected. Exhibit 2 shows the 

expected SR values calculated by the simulation (Exp SR by Sim) and by numerical integration 
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(Exp SR by Int). We also show the 95th percentiles of SR calculated using several methods: 

simulation (95th quantile by Sim), numerical integration (95th quantile by Int), and Sidak method 

(95th quantile by Sidak). In the same graph, the horizontal line represents the value of the 95th 

quantile of the null distribution under a 1-trial assumption (a standard test). 

Exhibit 2 illustrates how easy it is to inflate SR values by running multiple trials, even with 

time series with zero expected returns. Note that the expected maximum SR very quickly exceeds 

the 95th quantile obtained under the 1-trial assumption. As we can see, for practical purposes, all 

the applied methods give very similar results. 

Note that the Sidak correction method and Extreme Value method used in this analysis are 

expected to work only if the trials are independent. In a real-life situation, a researcher typically 

tries different parameter configurations for similar trading ideas, leading to non-zero correlations 

between the trials. To address this concern, Lopez de Prado and Lewis (2019) and Lopez de Prado 

(2019b) show how to estimate the number 𝐾 of independent trials undertaken, using hierarchical 

clustering techniques. 

Bailey and Lopez de Prado (2014) proposed a more accurate method that takes into account 

the moments of the SR distribution. The authors define the Deflated Sharpe Ratio (DSR) as a 

statistical distance between the reported SR value and the hypothetical 𝑆𝑅0,  

𝐷𝑆𝑅[𝑆𝑅∗] = 𝑍 [
(𝑆𝑅̂−𝑆𝑅0)√𝑇−1

√1−𝛾̂3𝑆𝑅̂+
𝛾̂4−1

4
𝑆𝑅̂2 

]     (21) 

where:  

𝑆𝑅0 = 𝐸[max {𝑆𝑅̂𝑘}] = √𝑉 {𝑆𝑅̂𝑘} ((1 − 𝛾)Z−1 (1 −
1

𝐾
) + 𝛾Z−1 (1 −

1

𝐾𝑒
)) 

Note that in equation (21), the denominator is the standard deviation of SR values, not the 

expected standard deviation of the maximum Sharpe ratio. DSR deflates the Sharpe ratio for the 

number of trials, the sample length, and the skewness and kurtosis of returns. 

The methods presented thus far are among the FWER methodologies. FWER refers to the 

probability of making a Type I error among a specified group – or family – of tests. For this method 

type, even a single false discovery is unacceptable. This may seem too strict in some settings, e.g. 

in automobile production, where a certain proportion of defective cars is tolerated, as the False 

Discovery Rate (FDR) approach does (see Benjamini and Hochberg (1995) and Benjamini and 

Yekutieli (2001)). This level of tolerance may not  be acceptable in investing, because the number 

of profitable strategies is very low, and a single false positive could impact the performance of 

trillions of dollars. This would be the case if, for instance, the value factor resulted to be a false 
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positive. Accordingly, in finance the FWER approach is arguably more relevant than the FDR 

approach, even if that comes at the expense of a higher number of false negatives.3 

There is a second reason to prefer FWER over FDR. In our example the PM received only 

one strategy with the corresponding SR of the backtest. They did not have any information on the 

performance of other backtested trials. The problem of testing the “best” strategy out of N 

backtested strategies is equivalent to the problem of testing the whole family while controlling for 

the FWER. 

There are many challenges and limitations to the methodologies presented in this section. 

We have already mentioned that the presented methodologies might excessively increase Type 2 

errors (rejection of true signals) while reducing Type 1 errors (acceptance of false signals). The 

optimal strategy should be carefully designed based on the user’s requirements on a case-by-case 

basis. Lopez de Prado (2020, 2022), for instance, provides analytic estimates of Type 1 and Type 

2 errors for the Sharpe ratios of investments and derives their familywise counterparts. Another 

challenge of the presented methods arises due to the non-stationarity of financial time series. Harris 

(2016) discusses this and other limitations of quantitative evaluations of trading strategies.  

CONCLUSION 

The role of backtesting as a cornerstone technique in the development of systematic 

investment strategies cannot be overstated. This article has outlined three main types of backtests, 

namely the walk-forward, resampling, and Monte Carlo methods. Each offers unique advantages 

and distinct risks, which shape the techniques into specialised tools for crafting investment 

strategies. 

We have recommended several best practices to significantly enhance the quality of the 

process. Noteworthy among these are the adoption of causal graphs and the use of rigorous 

statistical tests to validate that the Sharpe ratio significantly exceeds zero while controlling for 

SBuMT. Equally important are ensuring high-quality data, incorporating realistic costs, and 

accounting for liquidity constraints. 

It should be noted that simulations leave much to be desired and that the risk of overfitting 

is a significant concern. This issue is exacerbated by the non-stationarity of financial markets, 

which undermines the reliability of past performance as a predictor of future results. Given these 

considerations, it is evident that while backtesting is an invaluable tool, it must be utilised with 

care and not as the primary driver of research but rather to validate a semi-final and well-formed 

investment strategy. In particular, it is highly advisable that researchers backtest only strategies 

that are supported by a sound causal theory (see Lopez de Prado 2023). 

  

 

3 See Harvey and Liu (2014) and Perumal and Flint (2018) for a literature overview and 

further analysis.  
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