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The performance of equity portfolios 
optimized to have the lowest pos-
sible variance has attracted investor 
attention over the last several years. 

Minimum-variance strategies address an 
increased appreciation for risk management due 
to the financial crisis, as well as to the histor-
ical fact that low-volatility stocks tend to have 
returns that meet or exceed the market. The 
empirical observation that high-market-beta 
stocks are not rewarded with correspondingly 
higher returns is a long-standing empirical cri-
tique of the CAPM, as summarized by Fama 
and French [1992]. More recently, Ang et al. 
[2006] documented a low-risk, high-return 
empirical anomaly that they associate with 
idiosyncratic risk. The popularity of low-
volatility portfolio strategies that exploit these 
and other potential equity market anomalies 
prompted MSCI to launch the Global Min-
imum Volatility Indices for various geographic 
regions in August 2008.

The relative return to low-volatility port-
folios has continued to be strong in recent years. 
Exhibit 1 is a chart of the cumulative excess 
returns from 1968 to 2009 on two portfolios 
composed of large-cap U.S. equities, similar to 
the portfolios studied by Clarke, de Silva, and 
Thorley [2006].1 The dotted line in the exhibit 
is the cumulative return to the market, mea-
sured by the capitalization-weighted portfolio 
of the largest 1,000 stocks. The solid line in the 
exhibit is the cumulative return to a long-only 

minimum-variance portfolio constructed from 
the same set of securities. As shown on the 
right side of Exhibit 1, the cumulative excess 
return of the minimum-variance portfolio has 
been slightly higher than cumulative excess 
return of the market over the past 42 years. 
Despite the higher average return, the real-
ized risk of the minimum-variance portfolio 
is well below that of the market as indicated 
by less f luctuation in the solid line compared 
to the dotted line. For example, the impact of 
the October 1987 market crash is somewhat 
muted, and the large decline in the general 
market after the turn of the century appears 
as only a minor decline in the minimum-
variance portfolio. The successful creation of 
a low-realized-risk portfolio simply confirms 
the value of security risk forecasting and the 
process of portfolio optimization. But if the 
relatively high return to low-risk portfolios 
continues into the future, the result represents 
a valuable investment opportunity in addition 
to a puzzling violation of risk–return principles 
in financial economics.

In this article, we examine the compo-
sition of minimum-variance portfolios with 
a focus on the analytic form and param-
eter values of individual security weights. 
Eff icient frontiers in mean-variance opti-
mization are typically described using the 
mathematics of unconstrained portfolios, but 
implemented in a long-only constrained format 
using a numerical optimizer. Although the 
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mathematics of unconstrained optimization is well 
known, a key innovation in this article is an analytic 
solution for optimal security weights under the long-
only constraint. Constrained solutions in portfolio math-
ematics are generally non-tractable, but the assumption 
of a single-factor risk model allows for a simple and 
intuitive equation for the optimal weights. The port-
folio mathematics shows that while high estimated idio-
syncratic risk can lead to a low security weight, high 
systematic risk takes the large majority of investable 
securities completely out of the long-only solution.

The analytic results from the single-factor model 
indicate that minimum-variance portfolios are strictly 
populated by stocks with betas lower than a specified 
threshold. Security weight as well as membership in 
the optimized long-only portfolio is less sensitive to 
idiosyncratic risk, an intuitive result from portfolio 
theory. We compare the single-factor analytics with 
numerical optimizations on a more general covariance 
matrix and find that the consideration of non-market 

sources of security correlation only marginally modifies 
the analytically derived optimal weights. Further devel-
opment of the optimization mathematics shows that the 
ratio of portfolio beta to the long-only threshold beta 
dictates the portion of ex ante portfolio variance related 
to market exposure. Values of this ratio over time indi-
cate that 80% to 90% of long-only minimum-variance 
portfolio risk is systematic in the single-factor model. 
Together, the analytic and empirical f indings suggest 
that the strong performance of minimum-variance port-
folios is related to the long-standing empirical critique 
of the CAPM that low-beta stocks have relatively high 
returns. To the extent that it measures a separate phe-
nomenon, the more recently identified idiosyncratic risk 
anomaly of domestic equity markets by Ang et al. [2006] 
and in international equity markets by Ang et al. [2009] 
is less likely to impact portfolio returns.

The first section of this article reviews the perfor-
mance statistics of the market and minimum-variance 
portfolios reported in Exhibit 1, as well as two variations 

E x h i b i t  1
Market and Minimum-Variance Portfolios’ Cumulative Returns of 1,000 Largest U.S. Stocks, 1968–2009
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of the base-case minimum-variance portfolio. The second 
section discusses the analytic results derived in the 
technical appendix with a focus on the relatively simple 
equation that emerges for long-only optimal security 
weights. The third section illustrates the application of 
the analytic results using empirical data on 1,000 U.S. 
stocks from 1968 to 2009, followed by a detailed analysis 
of the optimization for January 2010. The fourth section 
examines the decomposition of ex ante portfolio risk into 
benchmark exposure and residual risk over time. The final 
section summarizes conclusions about minimum-variance 
portfolio composition and discusses implications for gen-
eral mean-variance optimization in a long-only setting.

Portfolio Statistics and Covariance 
Matrix Estimation

In this section we review the portfolio statistics for 
the market and minimum-variance portfolios shown in 
Exhibit 1 and discuss our security covariance matrix esti-
mation methodology. The first two columns of Exhibit 2 
show return statistics for the market and what we here-
after refer to as the base-case minimum-variance port-
folio. The statistics in Panel A of Exhibit 2 are calculated 
from monthly observations and reported as annualized 
(multiplied by 12) returns in excess of the T-bill return, 
which averaged about 5% over the period 1968–2009. For 
expositional simplicity we hereafter drop the adjectives 
“excess” and “annualized,” although they apply to all 
returns reported in this study. The 5.37% average return 
of the base-case minimum-variance portfolio 
is slightly higher than the market benchmark 
return of 4.88%. The realized risk as mea-
sured by a standard deviation of 11.90% is 
only about three-fourths of the market port-
folio’s risk of 15.56%. The result in Panel A 
is a Sharpe ratio of 0.45 for the base-case 
minimum-variance portfolio compared to 
only 0.31 for the market portfolio. Specifi-
cally, matching the base-case portfolio risk 
of 11.90% with a risk-equivalent portfolio 
of a 11.96/15.56 = 77% market index and a 
23% risk-free cash investment yields a 5.37 – 
(0.77 × 4.88) = 161 basis-point advantage to 
the minimum-variance portfolio.

Panel B of Exhibit 2 shows that the 
average market beta of the base-case port-
folio is 0.66, calculated by a single regression 

of the minimum-variance returns on market returns over 
the entire 504-month history. The annualized intercept 
term from this regression, which we refer to as alpha, is 
2.17% for the base-case minimum-variance portfolio.2 
The active risk (annualized standard deviation of residual 
return) is 6.10%, indicating that the reduction in total 
portfolio risk comes with substantial residual risk to the 
benchmark. The information ratio (alpha divided by 
active risk) of the base-case portfolio is 0.35 compared 
to zero, by definition, for the market index. Although 
benchmark relative risk and return is not the objective 
of minimum-variance optimization, information ratios 
of this magnitude over four decades are rare, even for 
strategies that target risk-adjusted active return.

For comparison purposes, the third column in 
Exhibit 2 reports the returns for an unconstrained long–
short minimum-variance portfolio constructed from the 
same universe of stocks as the long-only base case. The 
realized risk of 10.61% for the long–short portfolio is 
lower than that of the base case due to relaxing the long-
only constraint, but the realized average return is also 
lower leading to a similar Sharpe ratio. The long–short 
optimization assigns positive and negative weights to all 
1,000 securities each month, with an average of about 
175% of the notional value long and 75% short, or what 
could be referred to as a 175/75 portfolio. Shorting of 
this magnitude is costly or impractical in many applied 
settings, so the long-only base-case portfolio remains the 
focus of this study. The base-case portfolio averages about 
120 long security positions over time (i.e., about 12% of 

E x h i b i t  2
Annualized Portfolio Excess Returns and Performance, 1968–2009
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the 1,000-security investable set) and has a security weight 
distribution similar to the market portfolio. For example, 
the maximum security weight in the January 2010 opti-
mization, which will be discussed in detail later, is about 
3%, and the large majority (86 of the 128 positions for that 
month) is below 1%. The return statistics for the long-only 
single-index minimum-variance portfolio reported in the 
last column of Exhibit 2 is discussed in the next section.

Although we refer to the minimum-variance port-
folio, uniqueness is specific to the ex ante, or predicted, 
security covariance matrix supplied to the optimization 
routine, and estimation techniques vary. The estima-
tion of the ex ante security covariance matrix used in 
this study employs an intentionally simple process: a 
60-month rolling window of individual security return 
variance and covariance terms.3 The 1,000 variance 
terms along the diagonal of the 1,000-by-1,000 matrix as 
well as the 499,500 unique off-diagonal covariance terms 
are “shrunken” towards their respective cross-sectional 
means each month in accordance with the Bayesian statis-
tical theory of Ledoit and Wolf [2004].4 Although more 
sophisticated covariance matrix estimation techniques 
(e.g., factor models and GARCH) are available, we use 
the raw historical sample data to keep our empirical 
conclusions generic and replicable. The monthly opti-
mization process is also generic in that no constraints are 
imposed except the restrictions that individual security 
weights are positive (long-only constraint) and sum to 
100% (full investment constraint). The Bayesian adjust-
ment of the security covariance matrix elements leads to 
maximum security weights of 3% to 4% in most months 
without the need for individual position constraints.5

Minimum-Variance Portfolio Security 
Weights for the Single-Index Model

Prior empirical studies document most of the long-
term minimum-variance portfolio results discussed in the 
preceding section. Historical backtesting and simulation 
are subject to data-mining biases, however, and provide 
only a limited perspective on portfolio composition. In this 
section, we explore the mathematics of minimum-variance 
portfolios with the objective of providing a deeper ana-
lytic understanding of the long-term results. We employ 
Sharpe’s [1963] well-known single-index assumption that 
the only source of common risk across equity securities 
is a single factor—the capitalization-weighted market 
portfolio. A key analytic result derived in the appendix is 

that, under the assumption of the single-index model for 
security returns, the weight for individual securities in the 
unconstrained minimum-variance portfolio is

	
wi

MV

i

i

LS

= −






σ
σ

β
βε

2

2
1

	
(1)

where

	 σMV
2  = �ex ante return variance of the minimum-

variance portfolio
	 σεi

2  = �ex ante idiosyncratic return variance for 
security i

	 β
i
 = ex ante market beta for security i

	 β
LS

 = long–short threshold beta

The relatively simple form of Equation (1) is 
attributable to the absence of expected returns in the 
minimum-variance objective function and the assump-
tion of a single-index risk model. The full specification 
for the long–short threshold beta, β

LS
, discussed in the 

appendix, turns out to be just slightly higher than the 
average beta across all investable securities. The position 
of this long–short threshold beta in the denominator of 
the second term of Equation (1) indicates that securities 
with betas greater than β

LS
 (a little less than half of the 

investable securities) are assigned negative weights in 
unconstrained optimizations. A key insight from Equa-
tion (1) is that systematic rather than idiosyncratic risk 
dictates whether an individual security has a negative 
weight in an unconstrained optimization.

An even more novel mathematical result from the 
appendix is that the basic form of Equation (1) is pre-
served in long-only constrained optimizations,

	 w wi
LMV

i

i

L
i L i= −







< =
σ
σ

β
β

β β
ε

2

2
1 0for else 	 (2)

where

	 σLMV
2  = �ex ante return variance of the long-only 

minimum-variance portfolio
	 β

L
 = long-only threshold beta

Equation (2) holds for long-only constrained 
portfolios that are generally not subject to closed-form 
mathematical analysis. As in Equation (1), individual 
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security weights depend on two portfolio-wide param-
eters: the ex ante variance, σLMV

2 , and the long-only 
threshold beta, β

L
. The cross-sectional variation in the 

individual positive weights is driven by the two security-
specif ic risk parameters: market-model idiosyncratic 
variance, σεi

2 , and market beta, β
i
. High idiosyncratic 

volatility in the denominator of the first term of Equa-
tion (2) can drive the security weight towards zero, but 
not out of solution. High market beta in the second 
term also leads to a lower security weight, but when the 
market beta is larger than the long-only threshold beta 
the security is assigned an optimal weight of zero. The 
long-only threshold beta typically falls within the lowest-
beta quintile of the investable set, so that a large majority 
of securities, for example 80%, have zero weights. The 
20% of all investable securities in the long-only optimal 
solution are those with the lowest estimated betas.

Equation (2) holds exactly under a simplified cova
riance matrix structure—a risk model in which the only 
source of correlation is through a single common factor. 
For purposes of comparison, the final column of Exhibit 2 
reports the track record of a long-only minimum-variance 
portfolio that is actually optimized from a single-index 

model covariance matrix. We formed our single-factor 
covariance matrix directly from the Bayesian-adjusted 
sample data, but also populated the matrix using OLS 
regressions of individual security returns on the market 
with little change in the results.6 The single-index port-
folio realized risk of 12.83% in Exhibit 2 is slightly higher 
than that of the base-case portfolio, presumably due to 
sources of security-to-security correlation not captured 
by the single factor. The single-index minimum-variance 
portfolio results verify Equation (2) in that the output 
of the numerical optimizer exactly matches the security 
weights calculated analytically.

Cross-Sectional Examination 
of Security Risk and Weights

According to Equations (1) and (2), the two security-
specific parameters that determine the cross-sectional 
variation in optimal security weights under the single-
index model are beta and idiosyncratic risk. In this section, 
we document the historical ranges of these security risk 
parameters and illustrate their impact on security weights. 
Exhibits 3 and 4 plot the 5th–95th percentile range and 

E x h i b i t  3
Range of Forecasted Market Betas of 1,000 Largest U.S. Stocks, 1968–2009
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median value for 1,000 large-cap U.S. stocks from January 
1968 to December 2009. The median security beta in 
Exhibit 3 varies around one, but is not exactly 1.0 as 
it would be in a capitalization-weighted average. The 
5th–95th percentile range of betas can be characterized 
as about 0.8–1.4 over time, except for around the turn of 
the century when the lower end dipped to about 0.5 and 
then a few years later the upper range increased to about 
1.7. Note that changes in the range of beta reported in 
Exhibit 3 are smoothed by the use of a rolling 60-month 
window of historical returns data; a shorter window 
would be more reactive to market events. Also note that 
Exhibit 3 plots the range of forecasted betas; the range 
of realized betas across the 1,000 stocks is about twice 
as large. The Bayesian adjustment of historical betas by 
one-half towards their mean for purposes of forecasting is 
motivated by the previously mentioned Bayesian statistical 
theory and is consistent with cross-sectional regressions 
of realized beta on historical betas.7

Exhibit 4 shows the cross-sectional median and 
5th–95th percentile range for the 1,000 security ex ante 
idiosyncratic standard deviations at the beginning of each 
month. Median idiosyncratic risk f luctuates around 30%, 

except for several years after the turn of the century when 
the median increased to about 45%. The cross-sectional 
spread of idiosyncratic security risk is fairly stable over 
time, with a 5th–95th percentile range of about 25% to 
40%, except for a sharp rise after the turn of the century. 
As with the market betas, Exhibit 4 plots the range of fore-
casted rather than realized 60-month residual risks, which 
have a spread about 1.4 (square root of 2) times larger.

Given the simplicity of the analytic solution in Equa-
tions (1) and (2), one way to study the impact of cross-
sectional variations in security risk is to plot the security 
weights in a minimum-variance portfolio for a specific 
example month. Exhibit 5 is a scatterplot of the 1,000 
forecasted values for the two market-model security risk 
parameters for January 2010. With the exception of a few 
high values not included in Exhibit 5, the security betas 
fall between 0.5 and 2.0. Exhibit 5 shows vertical lines 
for the long-only threshold beta of 0.76 and the long–
short threshold beta of 1.06 for this particular month, 
calculated according to Equations (A5) and (A6) in the 
appendix. The range for forecasted idiosyncratic security 
risk on the vertical axis of Exhibit 5 is about 25% to 65%, 
consistent with the right side of Exhibit 4. Exhibit 5 

E x h i b i t  4
Range of Forecasted Idiosyncratic Risks of 1,000 Largest U.S. Stocks, 1968–2009
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verifies the well-known positive correlation between 
idiosyncratic risk and market beta, at least for mid-range- 
and higher-beta stocks. A less appreciated empirical prop-
erty is a slightly negative correlation between idiosyncratic 
risk and market beta for the low-beta stocks that are 
included in the long-only minimum-variance portfolio 
(i.e., to the left of the long-only threshold).

Exhibit 6 shows the 1,000 individual security weights 
under the single-index model for both the long–short 
(grey dots) and long-only (black dots) minimum-variance 
portfolios plotted against market beta for January 2010. 
The optimal long–short weights (grey dots) decline with 
higher market beta in accordance with the role of β

i
 in 

Equation (1), and move from positive to negative values 
as the security beta exceeds the long–short threshold value 
of 1.06. The optimal long-only weights (black dots) also 
decline with market beta, but stop at zero for beta values 
above the long-only threshold beta of 0.76, in accordance 
with Equation (2). In fact, only 71 of the 1,000 investable 
securities are in the long-only solution for January 2010. 
For these securities, the decline in long-only weights is 

steeper than the decline in long–short weights because 
the long-only threshold beta is lower than the long–short 
threshold beta. The long–short weights (grey dots) in 
Exhibit 6 deviate from a strict line due to the idiosyn-
cratic risk parameter in Equation (1). The deviations are 
towards lower values for large-positive-weight securities 
and higher values for large-negative-weight securities. The 
long-only weights (black dots) also tend to deviate from a 
strict kinked line with lower optimal weights due to the 
slightly negative correlation between beta and idiosyn-
cratic risk for the stocks that come into solution.

Exhibit 7 shows the 1,000 optimal security weights 
under the single-index model for the long–short (grey 
dots) and long-only (black dots) portfolios plotted against 
idiosyncratic risk. While there is some tendency for lower-
idiosyncratic-risk securities to have positive long–short 
weights (grey dots), the clearest pattern is that high-
idiosyncratic-risk securities have low-absolute-value 
weights, consistent with the role of idiosyncratic risk in 
Equation (1). A pattern of lower long-only weights (black 
dots) for higher-idiosyncratic-risk securities is only slightly 

E x h i b i t  5
Single-Index Model Risk Parameters for 1,000 U.S. Stocks, January 2010
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evident in Exhibit 7. Only low-beta securities are present 
in the long-only portfolio, and as shown in Exhibit 5, 
idiosyncratic risk is not positively correlated to beta for 
these securities. The key contrast between Exhibits 6 and 7 
is that optimal security weights are much more aligned 
with security beta than idiosyncratic risk, at least when 
the optimization is based on the single-index covariance 
matrix assumption that underlies Equations (1) and (2).

Exhibit 8 is similar to Exhibit 6, but plots security 
weights for the general covariance matrix optimizations 
reported in the second and third columns of Exhibit 2. 
The general rather than single-index covariance matrix 
used in the construction of the base-case minimum-
variance portfolio incorporates correlation patterns 
beyond the single market factor that can drive security 
weights away from the analytic values specified in Equa-
tion (2). The weights still decline with market beta in 
Exhibit 8, but the pattern is not as tight as in Exhibit 6 
where the only source of covariance between securi-
ties is through the market factor. But the key principle 
that low-market-beta stocks dominate the long-only 

minimum-variance portfolio is still quite evident in 
Exhibit 8. All of the 128 (compared to 71 in Exhibit 6) 
long-only weights are for securities with betas less than 
one, and most of the larger-weight securities have betas 
below the long-only threshold value of 0.76. The com-
panion plot (not shown) to Exhibit 8 for weights and 
idiosyncratic risk using the general covariance matrix 
is not materially different from Exhibit 7.

The concentration of low-beta stocks in long-only 
optimizations is consistent with recently published indices 
by MSCI for minimum-volatility portfolios. For example, 
at the end of 2009, 61% of the MSCI World Minimum 
Volatility Index was in the lowest-beta-quintile stocks, 
an additional 24% was in the stocks of the second-lowest 
beta quintile, for a total of 85%. By contrast, the stan-
dard capitalization-weighted MSCI World Index is more 
evenly distributed across the beta quintiles. Specifically, 
at the end of 2009, 25% of the MSCI World Index was 
in the lowest-beta-quintile stocks, and another 22% was 
in the stocks of the second-lowest beta quintile, for a 
total of 47%.8

E x h i b i t  6
Minimum-Variance Security Weights and Market Beta Single-Index Optimization, January 2010
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E x h i b i t  7
Minimum-Variance Security Weights and Idiosyncractic Risk Single-Index Optimization, January 2010

E x h i b i t  8
Minimum-Variance Security Weights and Market Beta Base-Case Optimization, January 2010
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Temporal Dynamics and  
Decomposition of Ex Ante  
Portfolio Risk

The portfolio statistics and time series regressions 
over the entire 42-year sample in Exhibit 2 mask sub-
stantial intertemporal dynamics in minimum-variance 
portfolio risk. In this section, we examine the ex ante 
risks for each optimization over time to see how min-
imum-variance portfolios adapt to changing market 
conditions. Exhibits 9 and 10 are based on the ex ante 
portfolio return standard deviation estimated at the 
beginning of each of the 504 months for the four port-
folios in Exhibit 2. By design, the ex ante risk forecasts 
are similar to the realized risk of each portfolio over the 
prior 60 months. For example, the sudden drop in fore-
casted risk for all four portfolios towards the end of 1992, 
as shown in Exhibit 10, is a result of the large negative 
October 1987 return observations dropping out of the 
60-month rolling window. The highest ex ante risk is 
from the non-optimized market portfolio in Exhibit 10 

(dotted line), with an average value of 16.88% as reported 
in Exhibit 9. The ex ante risk for the base-case minimum 
variance portfolio in Exhibit 10 (solid line) moves with 
the market portfolio, but is, by construction, always 
below the market.

Consistent with the ordering of realized risks 
in Exhibit 2, Exhibit 10 shows that the long–short 
minimum-variance portfolio’s ex ante risk (double line) 
is always slightly below the risk of the base case because 
of relaxing the long-only constraint. In contrast, the 

E x h i b i t  9
Portfolio Ex Ante Risk, 1968–2009

E x h i b i t  1 0
Ex Ante Portfolio Risk (Standard Deviation), 1968–2009
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long-only single-index portfolio’s ex ante risk (grey line) 
is lower than the risk of the other portfolios shown in 
Exhibit 9 in contrast to the higher realized risk shown in 
Exhibit 2. The single-index model’s ex ante risk tends to 
understate the actual realized risk of that portfolio because 
the covariance matrix does not account for correlation 
structures beyond the single risk factor. The average 
ex ante risk of the single-index portfolio measured by the 
general covariance matrix (used in the construction of the 
base-case portfolio) is 14.66%, which is both more realistic 
(i.e., closer to) and consistent with the relative ordering of 
the realized portfolio risks given in Exhibit 2.

A common practice in portfolio management is to 
attribute total portfolio risk to various factor exposures and 
idiosyncratic risk. As discussed in the appendix, the process 
of linear factor risk decomposition is based on variances 
rather than standard deviation and is exhaustive in that it 
apportions all of the risk to one or another source. The 
appendix derives the interesting result that the systematic 
portion of long-only minimum-variance portfolio risk 
under the single-index model is equal to the ratio of the 
ex ante portfolio beta and the long-only threshold beta,

	

β σ
σ

β
β

P M

P

P

L

2 2

2
=

	

(3)

For example, if the long-only threshold beta is 
β

L
 = 0.8, then the long-only minimum-variance port-

folio is composed of securities with betas below 0.8. If 
the resulting portfolio beta (weighted average of security 
betas) is β

P
 = 0.7, then Equation (3) states that seven-

eighths of the ex ante portfolio variance is associated 
with market exposure, leaving only one-eighth of the 
total portfolio risk as idiosyncratic.

Exhibit 11 plots the long-only threshold and sin-
gle-index minimum-variance portfolio betas over time, 
showing values that swing around 0.8 and 0.7, respectively, 
at the beginning of 1968, to lower than 0.6 and 0.5, 
respectively, at the turn of the century, and then back 
again. The ratio of beta values specified by Equation (3), 
shown as the dotted line at the top of Exhibit 11, indi-
cates that the portion of ex ante portfolio risk attributable 
to market exposure varies over time and has an average 
value of about 90%. For example, when the October 
1987 observation drops out of the 60-month risk model 
in November 1992, the portion of optimized portfolio risk 
designated as systematic suddenly drops from over 90% to 
about 80%, and remains closer to 80% until observations 

from the 2008 financial crisis begin to be included in the 
risk model. The use of ex ante risk forecasts reveals the 
dynamic and changing nature of equity market risk over 
time, but one consistent result is that a large majority 
(80%–90%) of the analytically tractable long-only min-
imum-variance portfolio risk is associated with general 
market exposure.

Because of the principle of diversif ication, the 
minimum-variance portfolio risk decomposition discussed 
earlier is essentially the opposite of the risk decomposition 
of the individual securities that compose the portfolio. 
For example, Exhibits 3 and 4 indicate that a typical U.S. 
stock has a beta of about 1.0 and idiosyncratic risk of about 
30%. If the market risk is, say, 15%, then the systematic 
variance of the typical stock is 0.152 = 0.0225, and the 
idiosyncratic variance is 0.302 = 0.0900, so about 80% of 
total security risk is idiosyncratic. In addition, the stocks 
included in the long-only minimum-variance portfolio 
have an even lower average beta of about 0.66, so their 
systematic risk is only (0.66 × 0.15)2 = 0.0100, while 
their idiosyncratic variance is still about 0.0900. Thus, the 
variance decomposition of individual stocks in the long-
only portfolio is about 10% (0.0100/0.1000) systematic 
and 90% (0.0900/0.1000) idiosyncratic, just the oppo-
site of the minimum-variance portfolio risk decomposi-
tion shown at the top of Exhibit 11. The diversification 
benefits of a well-constructed portfolio will mostly shift 
the source of portfolio variance to a systematic market 
inf luence even though the individual security variance 
is dominated by idiosyncratic risk.

Besides an appreciation for the dynamic nature of 
equity market risks and thus minimum-variance port-
folio composition, the key finding of this section is that 
a large majority of minimum-variance portfolio risk is 
systematic under the single-index model assumption. 
While this result is consistent with the basic concept of 
diversification, the degree to which a long-only opti-
mized portfolio depends on systematic risk is established 
analytically by Equation (3). Additionally, the realized 
risk results reported in Exhibit 2 indicate that some of 
the remaining idiosyncratic risk in the single-index 
model may be eliminated by numerically optimized 
portfolios (compare the second and fourth columns) 
that capture additional correlations in a generalized 
covariance matrix. Together, these results suggest that 
the high average return performance of minimum-vari-
ance portfolios is best characterized as an exploitation 
of the classic CAPM critique that the cross-sectional  
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variation in a stock’s forecasted beta has no relation to 
realized average return. The more recently popularized 
idiosyncratic risk anomaly of Ang et al. [2006] may be 
indistinguishable from the classic CAPM critique when 
measured in a portfolio context.9

Although the CAPM critique may be a key driver, 
the dynamic nature of equity risks over time makes 
it unlikely that simply purchasing a collection of low-
market-beta stocks will perform as well as an explicitly 
optimized portfolio. For example, the realized risk of 
a capitalization-weighted portfolio of the lowest-beta-
quintile stocks (i.e., 200 of 1,000) each month is 12.70%, 
with an average return of 5.47%. These statistics are 
similar to the single-index model results reported in 
Exhibit 2, but less impressive than the base-case optimi-
zation. This article employs a rather simple covariance 
matrix estimation process. More sophisticated propri-
etary models perform even better in terms of forecasting 
the covariance structure of security returns, as explained 
by Chan, Karceski, and Lakonishok [1999].

Summary and Conclusions

The minimum-variance portfolio at the left-most 
tip of the efficient frontier has the unique property that 
optimal security weights are solely dependent on the 
security covariance matrix without regard to expected 
returns. Using the simplification associated with a sin-
gle-factor model for the security covariance matrix, we 
were able to derive an analytic solution for the long-
only constrained minimum-variance portfolio. The ana-
lytic solution together with an empirical examination 
of security risk parameters for large-capitalization U.S. 
stocks provides important insights into the composition 
of minimum-variance portfolios.

According to the single-index model, optimal secu-
rity weights depend on two individual security risk param-
eters as well as two portfolio-wide risk parameters. On the 
one hand, optimal security weights within the portfolio 
decline with market beta, and only securities with betas 
below a specific threshold value remain in the long-only 

E x h i b i t  1 1
Single-Index Minimum-Variance Portfolio
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solution. On the other hand, high idiosyncratic risk lowers 
the otherwise optimal security weight, but cannot by itself 
drive a security out of solution. Plots of security weights 
for a specific example month indicate that optimal weights 
are much more aligned with beta-related risk than idio-
syncratic risk in accordance with the intuition of optimal 
diversification. More general, but analytically less tractable, 
numerical optimizations on a full covariance matrix sug-
gest that systematic risk considerations continue to domi-
nate the construction of minimum-variance portfolios.

The portion of minimum-variance portfolio risk 
attributable to market exposure is analytically derived 
under the single-index model and shown to be equal 
to the ratio of portfolio beta to the long-only threshold 
beta. While these beta values change over time, the ratio 
is more stable and indicates that 80% to 90% of long-only 
minimum-variance portfolio risk is systematic. Numer-
ical generalizations beyond the analytically tractable 
single-factor model indicate that some of the remaining 
idiosyncratic risk is eliminated in optimized portfolios. 
These analytic and empirical results suggest that the 
surprisingly strong average return performance of min-
imum-variance portfolios is related to the well-known 
CAPM critique, which started with Black, Jensen, and 
Scholes [1972], that low-beta stocks have returns that 
are indistinguishable from high-beta stocks. Empirical 
tests of the CAPM using ex ante betas on the large-cap 
domestic stock market violate a number of assumptions 
of the equilibrium theory as first noted by Roll [1977]. 
But the fact that the low-beta, high-return phenomenon 
was empirically identified in the late 1960s and has not 
disappeared in the subsequent decades covered by this 
study suggests robust staying power for the anomaly.

In addition to the specific application to minimum-
variance portfolios, the results we have presented in this 
article have implications for general mean-variance port-
folio optimization. First, quantitative portfolio managers 
often observe that long-only optimized portfolios use 
only a small subset of the investable securities. Less under-
stood is that the relatively small number of securities in 
solution does not necessarily come from some complex 
set of exposure constraints, the interaction of variables 
in expected return forecasts and the risk model, or 
from transaction costs and turnover considerations. The 
optimal security weight equations we have derived in this 
article show that the variance minimization component 
in general mean-variance objective functions is sufficient 
to disqualify a large majority of investable securities.

Second, the mathematics indicates that the many 
parameter estimates in a large security covariance matrix 
are not equally important for long-only optimizations. 
If only the lowest-total-risk quintile (20%) of stocks 
end up in solution, then the values of only about 4% 
(20% squared) of all covariance matrix elements directly 
impact optimal security weights. Thus, a sharper focus 
on a relatively small subset of risk estimates in the com-
plete covariance matrix may be warranted for long-
only mean-variance optimization. Finally, the analytic 
approach of this study provides further support for 
employing an explicitly estimated covariance matrix in 
mean-variance optimization. While the matrix algebra 
behind analytic derivations in portfolio theory can be 
daunting, mathematical expressions of optimal weights 
provide important insights into the otherwise “black 
box” process of portfolio optimization.

A p p e n d i x

Optimization Mathematics

In standard Markowitz [1952] portfolio theory, the 
minimum-variance portfolio has the lowest risk of all possible 
portfolios, geometrically at the left-most tip of the efficient 
frontier. The N-by-1 vector of optimal security weights, w

MV
, 

only depends on the N-by-N security covariance matrix, Ω, 
and not expected security returns. Specifically, the optimiza-
tion problem is to minimize portfolio variance,

	 σ p
2 = w´ wΩ 	 (A-1)

subject to the budget constraint that the sum of the weights is 
one, w′ι = 1, where ι is an N-by-1 vector of ones. The matrix 
calculus solution to this optimization problem is

	
w

´MV =
−

−

Ω
Ω

1

1

t

l t 	
(A-2)

where the -1 superscript indicates the matrix inverse function.
We employ Sharpe’s [1963] well-known market model, 

a single-index risk model for security returns based on the 
return of the capitalization-weighted market portfolio, r

M
. 

In Sharpe’s market model, the returns on the ith security are 
assumed to follow r ri i i M i= + +α β ε  where ε

i
 is a zero-mean 

random variable with variance σ 2εi
 that is uncorrelated with 

β
i
 or any other ε

j
. Let σM

2  denote the variance of the market 
return or, more generally, a single risk factor around which 
securities are assumed to co-vary. Using matrix notation, 
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the N-by-N security covariance matrix associated with the 
single-index model is

	 Ω = ′ +ββββ σ σεM
2 2Diag( ) 	 (A-3)

where β is an N-by-1 vector of β
i
, and σε is an N-by-1 vector of 

σεi
. Using the Matrix Inversion Lemma (see Woodbury [1949]), 

the inverse covariance matrix is analytically solvable by

	

Ω− = −
′

+

1 2
2 2

2
2

1
1

Diag( / )
/ /

/
σ

σ σ

σ
σ

ε
ε ε

ε

( )( )

( )

ββ ββ

ββ
M

′′ββ
	

(A-4)

where β/σ 2ε is an N-by-1 vector of idiosyncratic risk–adjusted 
betas, β

i
/σ 2εi

. The substitution of Equation (A-4) into the gen-
eral solution for the minimum-variance portfolio weights in 
Equation (A-2) and substantial algebra, results in the simple 
expression for the individual security weights shown as Equa-
tion (1), where β

LS
 is a long–short threshold beta calculated by

	

β σ
β
σ

β
σ

ε

ε

LS
M

i

i

i

i

=
+1

2

2

2

2

Σ

Σ
	

(A-5)

We refer to β
LS

 in Equation (A-5) as the long–short 
threshold beta because the value delineates positive and nega-
tive security weights in an unconstrained portfolio optimiza-
tion. Under some simplifying assumptions (i.e., β

i
 and σεi

 are 
cross-sectionally uncorrelated and N is large), the value of 
β

LS
 is approximately equal to the mean beta (e.g., 1.0) plus 

the cross-sectional variance in betas (e.g., 0.04 for a cross-
sectional ex ante beta standard deviation of 0.2). Equation (1) 
states that securities with β

i
 < β

LS
 (i.e., a little more than half 

of the securities if β
LS

 = 1.04) have positive weights and that 
securities with β

i
 > β

LS
 have negative weights.

A more novel result is that the form of Equation (1) is pre-
served for long-only constrained minimum-variance portfolios 
where β

L
 is the long-only threshold beta, calculated as in Equa-

tion (A-5), but only using securities in the constrained solution

	
β σ β β

β
σ

β β
β

σ

ε

ε

L
M i L

i

i

i L

i

i

=
+ <

<

1
2

2

2

2

Σ

Σ 	
(A-6)

As a semi-formal proof of the long-only result in Equa-
tion (2), suppose that the value of β

L
 was already established 

and the investable set restricted to securities with beta values 
below that threshold. Then the original unconstrained optimi-
zation math in Equation (1) would hold and dictate the positive 
individual security weights. Now suppose a security with a beta 
above the threshold value were introduced into the investable 

set. If the negative optimal weight specified by Equation (1) 
were allowed, then the security would be included as a short 
position in the portfolio and would abide by the general opti-
mality condition that the first derivative of portfolio risk with 
respect to a small change in any individual security weight is 
zero. We know, however, that the first derivative is positive at 
the constrained weight value of zero because second deriva-
tives in a minimization are everywhere positive. A decrease 
in weight below zero is prohibited by the long-only constraint 
and an increase in weight above zero would increase portfolio 
risk, so the optimal weight on all securities with higher betas 
than the threshold value is fixed at zero.

As a practical matter, we verified that the constrained 
optimization solution specif ied in Equation (2) exactly 
matches a general numerical search routine for every secu-
rity in all 504 monthly optimizations of this study. Note that 
Equation (A-6) is not technically a closed-form solution; the 
value of β

L
 is required for the conditional sums in the right 

side of the equation. But optimal weights can be calculated 
without numerical search routines simply by sorting securities 
from low to high ex ante beta and examining the running 
sums. Typical values for β

L
 are one standard deviation below 

the cross-sectional mean (i.e., about 0.8) so that less than 
20% of the securities (those with the lowest betas) come into 
solution in long-only optimizations.

Employing Equation (1) along with the definition of a 
portfolio beta as the weighted average beta of the individual 
securities gives the unconstrained optimal portfolio’s beta as

	
β

σ
σ βMV

MV

M LS

=
2

2

1

	
(A-7)

By extension (using the intuition of optimization on an 
investable subset), a similar expression holds for the long-only 
constrained portfolio beta, β

LMV
, using the parameters σLMV

2

and β
L
. Combining this result with the definitional decom-

position of total portfolio risk into benchmark exposure risk 
and residual risk, σ β σ σεP P M

2 2 2 2= + , gives the ratio of portfolio 
to threshold beta as shown in Equation (3).

ENDNOTES

1The January 1968 start date is dictated by the availability 
of 60 months of historical returns for at least 1,000 stocks in 
the CRSP database. Exhibit 1 is similar to Exhibit 4 (Clarke, 
de Silva, and Thorley [2006]), but is extended through the end 
of the CRSP database available at the time of this study.

2We designate the regression intercept term that adjusts 
for the non-unitary beta as alpha, but note that “alpha” is 
often calculated as the simple difference between managed 
and benchmark portfolio returns (i.e., the managed portfolio 
beta is assumed to be one).
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3The 60-month historical variance and covariance 
terms are calculated without subtracting in-sample means 
(i.e., average squared returns and return cross-products) 
although this has little impact on the empirical results. In 
other words, the 1,000-by-1,000 covariance matrix is simply 
the product of the 1,000-by-60 historical excess return matrix 
multiplied by its transpose.

4For simplicity and ease of replication, we use a constant 
shrinkage factor of 50% over time. The exact shrinkage factor 
for the two-parameter model specified by Ledoit and Wolf 
[2004] varies from month to month with an average value of 
about 54% (i.e., individual covariance matrix elements are 
shifted 54% towards their cross-sectional mean value).

5We do not impose size limits on individual security 
weights, limit industry exposures, or impose tracking error 
constraints. We use the SAS Procedure NLP for numerical 
optimization, but selected months were cross-verified using 
alternative software routines with identical results.

6Using the matrix notation defined in the technical 
appendix, the formulas for deriving single index model parameters 
from the sample covariance matrix, W, are σM M M

2 = ′w wΩ , 
β σ= Ω wM M/ 2  and σ β σε

2 2 2= −Diag( )Ω M ,where w
M
 is a vector 

of security weights for the market portfolio.
7Specifically, we conducted 1,000-observation cross-

sectional regressions in selected months of 12-month realized 
betas on 60-month historical betas and found the estimated 
coefficient of these regressions is about 0.50. A similar rule of 
thumb embedded in on-line security beta estimates shrinks 
historical values by one-third rather than by one-half towards 
the theoretical mean value of one. Other beta shrinkage pro-
cedures based on different estimation windows and investable 
sets are provided by Vasicek [1973] and Blume [1975].

8The statistics are from MCSI and are based on the 
Barra Global Equity Model (GEM2) for December 2009.

9The Fama–French-like volatile-minus-stable (VMS) 
idiosyncratic volatility factor in the study Clarke, de Silva, 
and Thorley [2010] has a −0.88% annualized return from 
1968 to 2009, also the time period of this study. The return on 
a similarly constructed Fama–French-like beta factor is quite 
similar at −0.83%, and the time-series correlation coefficient 
between VMS returns and the beta-factor returns is 0.921.
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