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improvements in Sharpe ratios relative to traditional benchmarks. Annual backtests
further confirm the robustness of these gains across investment horizons. Our results
highlight that return predictability is concentrated in small-cap and value stocks.
Furthermore, predictive power is substantially enhanced in stocks characterized by
market frictions, including high information asymmetry and low trading volume,
where regularized and nonlinear models achieve superior risk-adjusted returns. We
also show that elevated net anonymous buying and greater broker-level dispersion of
anonymous order flow augment forecast accuracy, yielding 60 to 80 basis points higher
monthly returns and Sharpe ratios that approach or exceed 0.9 for flexible learners.
Overall, select ML techniques materially enhance return forecasting and portfolio
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1. Introduction

This study investigates two timely and underexplored questions in the context of Canadian
capital markets, with direct implications for investment management. First, it provides the
first empirical evidence on the performance of machine learning (ML)! methods in forecasting
Canadian stock risk premiums. Second, it offers novel evidence on whether anonymous
trading imbalances carry predictive power for the cross-section of stock returns. Together,
these contributions add the empirical asset pricing literature and offer valuable insights for
Canadian capital markets. We expect the findings of this study to inform the evolving toolkit
of asset managers and researchers seeking to enhance return forecasting amid increasing data
complexity and shifting market dynamics. This is because return predictability remains one
of the most consequential themes in modern finance, given its direct implications for asset
pricing, portfolio allocation, and trading decisions (Abhyankar et al., 2012). Importantly,
despite increasing market complexity—including heightened volatility and evolving
information flows—the academic pursuit of return predictability has only intensified,
reflecting its enduring importance in navigating today’s dynamic financial landscape (Jensen

et al., 2023; Gu et al., 2020).

The growing complexity of financial markets—characterized by heightened volatility
and evolving information dynamics—has deepened academic interest in return predictability,
underscoring its enduring importance for both theory and practice (Jensen et al., 2023; Gu
et al., 2020). This sustained focus is well justified, as even marginal improvements in forecast
accuracy can generate substantial economic value (Campbell and Thompson, 2008). At the
same time, this expanding literature has fueled debate over a foundational question: can

“empirical models accurately forecast the equity premium any better than the historical

' ML broadly refers to high-dimensional predictive models that incorporate regularization to prevent overfitting,
along with efficient algorithms for exploring numerous model specifications (Gu et al. 2020).
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mean?” (Spiegel, 2008, p. 1453). While extensive research has identified a wide range of
return predictors (e.g., Campbell and Thompson, 2008; Xu and Liu, 2024), skepticism about
spurious predictability and data mining—particularly when predictors are correlated
(Stambaugh, 1999)—has motivated a parallel stream of work focused on econometric

corrections (e.g., Lewellen, 2004; Campbell and Yogo, 2006).

A salient critique from Goyal and Welch (2003) is that strong in-sample correlations
often mask systematic out-of-sample underperformance, with few predictors consistently
outperforming the historical average. They further argue (Goyal and Welch, 2004) that this
failure is symptomatic of the widespread reliance on simple linear regression models. More
recent studies (Hou et al., 2020; Drobetz and Otto, 2021) echo this concern and suggest that
model misspecification may be a key driver of poor out-of-sample performance. Importantly,
models that relax the linearity assumption of the pricing kernel>—as imposed in traditional
frameworks such as the CAPM and APT-—often yield improved predictive performance.
Seminal studies (e.g., Bansal et al., 1993; Dittmar, 2002; Asgharian and Karlsson, 2008)
demonstrate that accounting for nonlinearities and complex interactions between variables

can lead to more robust and economically meaningful forecasts.

Given the inherent noise in stock returns and the potential multicollinearity among
predictors, increasing the number of predictors can cause simple linear models to overfit noise
rather than extract meaningful signals, thereby undermining predictive stability (Drobetz
and Otto, 2021; Gu et al., 2020). Against this backdrop, machine learning (ML) methods
offer considerable promise for enhancing return predictability. Their flexibility enables them

to handle high-dimensional predictor spaces and capture complex nonlinear interactions (Gu

2 The Euler equation, E [((1 + Ri,t+1) -mt+1|Qt)] = 1, characterizes the first-order condition of an investor’s

intertemporal consumption—investment decision, where m.,, denotes the stochastic discount factor (SDF), also
referred to as the intertemporal marginal rate of substitution (see Cochrane, 2005).
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et al., 2020). Despite this potential, applications of ML in empirical asset pricing remain
relatively limited. Gu et al. (2020) provide one of the first comprehensive comparisons of ML
algorithms for forecasting asset risk premiums, demonstrating that ML-based forecasts can
yield substantial economic gains for investors. Drobetz and Otto (2021) similarly show that
accounting for nonlinearities and interaction effects improves predictive accuracy and
portfolio performance in European equity markets, with long-only ML strategies producing
higher returns and Sharpe ratios. Extending this line of inquiry, Leippold et al. (2022) apply
multiple ML techniques to develop a comprehensive set of return predictors for the Chinese

stock market.?

In our empirical analysis, we build on a burgeoning body of research (e.g., Gu et al.,
2020; Drobetz and Otto, 2021; Leippold et al., 2022) by comparing a suite of ML techniques
to a linear benchmark model. Our baseline specification incorporates 37 firm-level and 15
macroeconomic predictors, including liquidity, investment, volatility, and valuation signals.
We draw on a comprehensive panel of 129,047 firm-month observations covering 1,308
Canadian firms over the period January 1990 to December 2023. We evaluate each model’s
performance using both statistical and economic criteria, including portfolio-level backtests

at monthly and annual frequencies.

Our results show that moderately flexible nonlinear models—particularly mid-depth
neural networks and gradient-boosted trees (XGBoost)—consistently outperform deeper
architectures and regularized linear models in predicting stock returns. For instance, monthly
long—short portfolios constructed with XGBoost deliver average excess returns exceeding 1%
per month, with Sharpe ratios above 0.75. In comparison, OLS benchmarks generate only

0.44% average monthly returns with Sharpe ratios around 0.30. Annual backtests reinforce

? Drobetz et al. (2024) show that ML-based estimators of time-varying market betas for U.S. stocks produce
the lowest forecast and hedging errors.



these findings: leading models explain up to 23% of return variation and yield average annual

returns over 20%, with Sharpe ratios approaching 0.9.

We show that return predictability is concentrated in small-cap and value stocks.
Equal-weighted long—short portfolios consistently outperform their value-weighted
counterparts by 10 to 20 basis points monthly, suggesting that smaller firms contribute
disproportionately to forecastable alpha. Within style categories, value stocks exhibit
particularly strong predictive signals—monthly returns exceed 3% with Sharpe ratios above
1.1—whereas growth stocks show weaker performance, with simpler models (e.g., LASSO,

Elastic Net) outperforming complex ones due to the noisier nature of the input signals.

We further find that market microstructure frictions enhance predictive performance.
Stocks with high information asymmetry (proxied by bid-ask spreads) and low trading
volume exhibit higher forecastability, with flexible models extracting more reliable signals

under these conditions.

Importantly, a novel insight from our analysis is the relevance of anonymous trading
in return predictability. Stock of elevated net anonymous buying are associated with monthly
return gains of 60 to 80 basis points, with Sharpe ratios nearly doubling for penalized
regression models. Moreover, greater broker-level dispersion in anonymous order flow—
capturing heterogeneity in private information—amplifies the performance of flexible,
interaction-based learners such as Random Forest, XGBoost, and mid-depth neural networks.
These models achieve Sharpe ratios above 0.9 in such environments, while simpler and overly

deep models show diminished performance.

From an investment management perspective, these findings underscore that the
effectiveness of predictive models is highly contingent on firm characteristics. Small-cap

returns are largely driven by liquidity and fast-moving fundamentals, consistent with the



view that microstructure inefficiencies dominate in these segments. In contrast, large-cap
returns are more influenced by systematic risk exposures and capital structure variables.
Similarly, value stocks are well suited to flexible ML models that can capture nonlinear
patterns, whereas growth stocks benefit from regularized approaches that mitigate overfitting
in noisy signal environments. These results suggest that investors should tailor their
forecasting and allocation strategies accordingly. For example, stable and implementable
portfolios may benefit from shallow neural networks or penalized linear models when applied
to illiquid stocks, while complex models require rigorous risk controls when deployed in more

liquid, large-cap universes.

The remainder of the paper is organized as follows. Section 2 provides the literature
background relevant to our research context. Section 3 describes the data and outlines the
methodological approach used for return prediction. Section 4 presents the empirical results,
including the assessment of out-of-sample predictability, the identification of key predictors,
and model selection based on unconditional and conditional predictive ability tests. Section
5 investigates whether predictive performance translates into portfolio gains. Section 6

concludes.
2. Literature Background

Forecasting the equity risk premium has a long history, dating back to Graham and
Dodd (1934), who argued that high valuation ratios signal undervalued markets and should
predict higher future returns. Most empirical asset pricing models—both time-series and

cross-sectional*—typically assume linear relationships between financial variables and

1 Stock return prediction can be viewed through the lens of time-series (TS) models, which forecast aggregate
returns using macroeconomic variables and technical indicators (e.g., Cochrane 2011; Rapach and Zhou 2013),
and cross-sectional (CS) models, which explain return variation across individual stocks based on firm-level
characteristics (e.g., Fama and French 1993; Jegadeesh and Titman 1993), typically estimated via Fama—
MacBeth regressions (Drobetz and Otto 2021).



subsequent stock returns (see Drobetz and Otto, 2021, for a discussion). A classic example is
the Capital Asset Pricing Model (CAPM) developed by Sharpe (1964), Lintner (1965), and
Mossin (1966), which posits that expected returns are driven solely by exposure to market
risk, implying a linear dependence on a single factor. However, as Campbell and Thompson
(2008) note, academic finance began to rigorously examine this premise only in the 1980s,
following empirical studies by Rozeff (1984), Fama and French (1988), and Campbell and
Shiller (1988) showing that valuation ratios such as the dividend-price and earnings-price
ratios possess substantial predictive power, particularly over long horizons. Parallel research
identified other return predictors, including interest rates (Fama and Schwert, 1977,
Campbell, 1987), corporate issuance activity (Baker and Wurgler, 2000), consumption-wealth

ratios (Lettau and Ludvigson, 2001), and relative valuations (Polk et al., 2003).

Yet, the robustness of return predictability has long been debated. Early concerns
centered on the persistence of predictors, biases in estimated coefficients (Stambaugh, 1999),
and the risk of data mining (Ferson et al., 2003). Goyal and Welch (2004) notably show that
many predictors fail out-of-sample and rarely outperform the historical average. This sparked
an ongoing debate about whether equity premium predictability reflects a genuine market
feature or results from in-sample overfitting. Part of the issue may stem from the common
assumption of a linear relationship between the equity premium and its predictors. However,
evidence suggests that this relationship is often non-linear and time-varying due to structural
breaks and model instability (Rapach, Strauss, and Zhou 2010; Pettenuzzo and Timmermann
2011).> Subsequent studies have addressed these concerns through improved econometric

techniques (e.g., Campbell and Thompson 2008; Rapach et al. 2010; Henkel et al. 2011), the

> As the number of predictors increases, simple linear models often overfit noise rather than capture meaningful
signals, making them unreliable for forecasting future stock returns given the inherent noise in financial data
(Drobetz and Otto, 2021). Moreover, parameter instability and structural breaks further exacerbate estimation
uncertainty in standard return forecasting models (Rapach, Strauss, and Zhou, 2010; Pettenuzzo and

Timmermann, 2011).



use of technical indicators (Neely et al. 2014), and the adoption of modern approaches such

as ridgeless regression (Kelly et al. 2024).

While these efforts are valuable, as even modest predictive power can enhance
investment decisions (Campbell and Thompson, 2008), still, consensus remains elusive.
Recent evidence (e.g., Dichtl et al. 2021) warns that many advanced models fail to
consistently outperform the historical average in out-of-sample tests, especially when
accounting for data-snooping biases. Most recently, Goyal et al. (2024) reassess variables
from 26 post-2008 studies and find that over one-third lose in-sample significance, half
perform poorly out-of-sample, and only a small subset exhibit robust predictive power in both

settings.

Interstginyly, the recent advancements in ML have reinvigorated research on equity
premium predictability, as ML models are capable of capturing complex, non-linear
relationships without relying on rigid assumptions. This flexibility makes ML particularly
useful in asset pricing (Gu et al. 2020; Akbari et al. 2021, Leippold et al. 2022). Gu et al.
(2020), for instance, highlight three key benefits of ML in return premium prediction: (1)
enhanced flexibility to model intricate relationships, (2) the ability to address high
dimensionality and multicollinearity through variable selection and dimensionality reduction,
and (3) methodological diversity that allows for modeling nonlinearities and interactions,

reducing overfitting and false discovery through penalization and model selection techniques.°®

Despite this paradigm shift, research on using ML methods to predict equity risk
premiums remains limited. Gu et al. (2020) conducted a comparative analysis of ML

techniques for measuring equity risk premiums and identified significant economic gains.

6 See Drobetz and Otto (2021) for a discussion of the literature on applied machine learning techniques in asset
pricing and return prediction. For a discussion of the growing importance of machine learning and textual
information processing in finance, see Heston and Sinha (2017).

8



Similarly, Leippold et al. (2022) applied these methods to the Chinese stock market, finding
high predictability for large stocks and state-owned enterprises over longer horizons. Drobetz
and Otto (2021) demonstrated that accounting for nonlinearities and interactions, effectively
captured by ML, enhances predictive performance over linear models in the European stock
market, with ML-based trading strategies leading to notable improvements in return and risk

metrics.

Building on this new line of research, we evaluate the performance of ML methods in
forecasting Canadian equity risk premiums. Our focus on Canada provides a compelling and
underexplored research setting for several reasons. First, restricting the analysis to a single
country offers a more homogeneous environment in terms of financial development, legal
institutions, corporate governance, and industrial composition—all of which influence the
effectiveness of return predictors (Assoe et al., 2024). Second, while the asset pricing literature
remains heavily U.S.-centric, incorporating non-U.S. evidence is critical for mitigating the
pervasive home bias in academic research (Karolyi, 2016). With a significant share of global
equity market capitalization (SIFMA, 2023), Canada represents an ideal setting for extending
findings beyond the U.S. context. This is particularly relevant given the segmentation
between Canadian and U.S. equity markets, which differ meaningfully in valuation levels and

cost of capital (King and Segal, 2008).

Despite perceived economic integration and overlapping institutional features (Irvine,
2000; La Porta et al., 2006; Bargeron et al., 2010), important differences remain—especially
in regulatory regimes and corporate governance structures (Attig et al., 2006; Nicholls, 2006;
Kryzanowski and Zhang, 2013). For instance, Canadian firms often exhibit higher ownership
concentration and operate within a largely voluntary governance framework, typically viewed
as weaker than that of the U.S. (Baker et al., 2011). These institutional distinctions shape

the relevance and performance of return predictors and help explain valuation gaps between



Canadian-listed firms and those cross-listed across both markets (Athanassakos and Ackert,
2021; King and Segal, 2008). Exploring these nuances is particularly important amid growing
concerns about the replicability and robustness of asset pricing models (Harvey et al., 2016;

Hou et al., 2022; Chen and Zimmermann, 2022; Jensen et al., 2023).
3. Data
3.1 Sample Construction

Our analysis begins with the universe of Canadian stocks from the Canadian Financial
Markets Research Center (CFMRC-TSX) monthly database. We focus on TSX-listed
ordinary common shares, excluding REITS, income trusts, and exchangeable shares. For firms
with multiple share classes, we aggregate market capitalizations and assign the stock to the
class with the highest market capitalization. Penny stocks are excluded. We then match TSX-
listed firms with COMPUSTAT and eliminate observations with missing or negative total
assets or sales, as well as firms classified as financial institutions (SIC codes 6000-6999),
utilities (4900-4999), or non-operating entities (9000-9999). To ensure consistency, we further
restrict the sample to common stocks identified by COMPUSTAT as each firm’s primary
security. Finally, we merge this dataset with Jensen et al. (2023) 7 to obtain a final sample
comprising 129,047 firm-month observations, covering 1,308 firms over the period January

1990 to December 2023.

We define the stock risk premium (SRP) as the difference between a stock’s total
return and the risk-free rate, proxied by the one-month return on three-month Government

of Canada Treasury bills (from CFMRC). Building on Jensen et al. (2023), we start with a

7 Available at https://jkpfactors.com/stock-char and downloadable via WRDS: https://wrds-

www.wharton.upenn.edu/pages/get-data/contributed-data-forms/global-factor-data
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comprehensive set of 85 stock-level predictive characteristics® widely used in the asset pricing
literature and demonstrated to have strong explanatory power for the cross-section of
expected returns (e.g., Chordia et al., 2017; Harvey et al., 2016; Lewellen, 2015; McLean and
Pontiff, 2016; Leippold et al., 2022). The variables and their definitions are primarily based
on Jensen et al. (2023). Notably, accounting characteristics are assumed to become available
four months after the fiscal year-end, and we use the most recent accounting data—annual
or quarterly—to construct predictors. To mitigate seasonality effects, quarterly income and
cash flow items are aggregated over the trailing four quarters (see Jensen et al., 2023 for
further details).” In a supplementary analysis (Section 3.4), we investigate whether
anonymous trading imbalances contribute to explaining the cross-section of Canadian stock

returns.

Complementing our set of firm-level variables, we construct 28 capital market and
macroeconomic predictors based on prior studies (e.g., Welch, 2008; Champagne et al., 2018;
Gu et al., 2020; Drobetz and Otto, 2021; Leippold et al., 2022; Jensen et al., 2023). Most

macroeconomic variables are obtained from the CANSIM database.!’
3.2 Data preparation:

Following Campbell and Thompson (2008) and Gu et al. (2020), we impose a four-
month effective lag on all accounting variables: three months to accommodate standard
reporting delays and one additional month due to the release lag already embedded in our

lagl  series. We define the stock risk premium (SRP) as the one-month-ahead excess

8 We began with a set of 153 firm-level predictors. To mitigate multicollinearity concerns, we retained only one
variable from each pair (of the same category) exhibiting a correlation coefficient greater than 0.50.

9 Jensen et al. (2023) construct characteristics separately from annual and quarterly Compustat data and retain
the most recent value available from either dataset.

' CANSIM (short for Canadian Socio-Economic Information Management System) is the main socioeconomic
database maintained by Statistics Canada
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return, ensuring that the predictive design remains free from look-ahead bias. To mitigate
the influence of extreme values and potential data errors, we winsorize all monthly firm
characteristics, including excess returns, at the 1st and 99th percentiles (Jensen et al., 2023;

Drobetz and Otto, 2021)."

We then standardize macroeconomic indicators (e.g., inflation, exchange rates, term
spreads, money growth) using pre-2009 means and standard deviations. Firm-level features
are cross-sectionally rank-normalized each month to the [-1, +1] interval. This hybrid
approach preserves the time-series dynamics of broad economic trends while ensuring
comparability and robustness to heavy tails across firms. To capture state-dependent effects,
we construct pairwise interaction terms between each standardized macro indicator and each

normalized firm-level variable.

To reduce dimensionality, we drop predictors with near-zero variance or a high
number of missing observations. We then run 100 bootstrap LASSO regressions (using
cv.glmnet with oo = 1) on pre-2009 data, retaining only those predictors that receive nonzero
coefficients in at least 70% of resamples. Finally, we identify all variable pairs with Pearson
correlations above 0.70 and drop one member of each pair. Macroeconomic indicators and
calendar dummies are always retained. This yields a final design matrix of 381 predictors for

use in our machine learning and linear model analyses.

' As highlighted by Drobetz et al. (2019) and Drobetz and Otto (2021), two key issues arise when using firm-
level characteristics to predict returns. First, many predictors exhibit strong temporal persistence—either as
slowly changing level variables (e.g., firm size) or as aggregated flow variables (e.g., book equity)—implying
that return predictability may extend beyond short horizons (Campbell & Cochrane, 1999; Cochrane, 2008).
Second, overlaps among predictors, particularly issuance and profitability measures, induce high correlations.
Consistent with Drobetz and Otto (2021), multicollinearity is not a primary concern here since our focus is on
overall model predictive performance rather than individual variable effects. Moreover, machine learning

methods address multicollinearity via regularization and variable selection, enhancing forecast accuracy.
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Table 1 provides the list of predictor variables along with their definitions and
summary statistics. The table also reports time-series averages of the monthly cross-sectional
means and standard deviations for excess returns, all 37 firm-level characteristics, and the 15

macroeconomic variables, along with the overall sample.

Table 1 goes here.

For the macro variables, we control for a comprehensive set of macroeconomic and
market-level variables to capture systematic influences on asset returns. These include:
inflation (INFLATION), measured as the monthly change in the Consumer Price Index
(CPI); money supply growth (M2_GR), defined as the monthly change in the M2 monetary
aggregate; unemployment rate (UNEMPLOYMENT); growth in capacity utilization
(CAP_UTI_GR), capturing the percentage of production capacity in use; growth in
manufacturers’ sales (MANU_ SALES GR); and commodity price fluctuations, proxied by
the monthly change in the Fisher Commodity Index (FISHER_PRICE_GR), which tracks

global price movements in 26 key Canadian commodities.

We also include the composite leading indicator (CLI_GR), an OECD-based index
designed to anticipate turning points in economic activity; short-term interest rates
(RET30_TBILL), measured as the one-month return on three-month Government of Canada
Treasury bills; term spread (TERM__SPREAD), calculated as the yield differential between
long- and short-term government bonds; and the exchange rate (X _RATE), defined as the

number of Canadian dollars per U.S. dollar.

To account for financial market conditions, we control for equity market volatility

(SPTSXVOL30), computed as the 30-day annualized standard deviation of daily log returns
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on the S&P/TSX 300 Index; excess market returns (SPTSX RP), measured as the return
on the S&P/TSX Composite Index in excess of the risk-free rate; equity issuance activity
(TSX_NET _ISSUE), following Welch and Goyal (2008), defined as the 12-month sum of
firm-level net issuance scaled by aggregate market capitalization; and trading activity
(TSX_VOLUME GR), measured as the monthly growth in total dollar trading volume on

the Toronto Stock Exchange.

Additionally, we control for economic policy uncertainty (EPU), which reflects
uncertainty surrounding government actions that influence the economic environment.
Although inherently unobservable, EPU is commonly proxied by the news-based index
developed by Baker et al. (2016), which measures the frequency of newspaper articles
containing terms related to the economy, policy, and uncertainty. This index captures
uncertainty regarding who will make policy decisions, what actions will be taken, when they
will occur, and what their economic effects might be. EPU is included due to its documented
effects on the equity risk premium (Brogaard and Detzel, 2015), firm investment and
efficiency (Gulen and Ion, 2016; Drobetz et al., 2018), bank liquidity hoarding (Berger et al.,
2020), M&A activity (Bonaime et al., 2018), financial reporting quality (El Ghoul et al.,
2021), and dividend policy (Attig et al., 2021). Following prior research (e.g., Brogaard and
Detzel, 2015; Gulen and Ion, 2016; Bonaime et al., 2018), we use the monthly aggregate EPU

index.!?

Finally, we incorporate a January dummy (JAN), set to 1 in January and 0 otherwise,

which accounts for the well-documented January Effect, and a December dummy (DEC), set

12 Baker et al. (2016) construct the EPU index by performing automated text searches of major newspapers to
count monthly articles containing terms related to the economy (E), policy (P), and uncertainty (U). These
counts are scaled by the total number of articles in each newspaper and month, standardized to unit standard
deviation per newspaper, averaged across newspapers by country-month, and normalized to a mean of 100 over
the sample period. The resulting index, available at www.policyuncertainty.com, offers a consistent cross-

country measure of economic policy uncertainty.
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to 1 in December and 0 otherwise, to control for possible year-end effects related to tax-loss

selling or portfolio rebalancing.'

4. Research Design and Results
4.1 Machine learning methods

For our empirical analysis, we adapt the methodological framework of Gu et al. (2020),
Drobetz and Otto (2021) and Leippold et al. (2022) to the context of the Canadian equity
market. Namely, to forecast one-month-ahead excess returns R; ¢14, we model the conditional
expectation E[(Ri,t+1|Zi,t)] as a function g(z;,) of P = 381 firm-month predictors z;,. We
train all models using a rolling, expanding-window framework. For each calendar year
y=2012,...,2023y = 2012, \dots, 2023y=2012,...,2023, we estimate the models on (i) a training
sample spanning January 1990 to December 2008 (108 months), followed by (ii) a fixed
validation window from January 2009 to December 2011 (36 months). We then produce out-
of-sample forecasts for the twelve test months of year y, store the model parameters, and roll

the test window forward by one year.'

One of the two primary objectives of this study is to examine whether incorporating
interaction effects and nonlinearities enhances the predictability of Canadian stock returns.
To this end, we assess the performance of seven modeling approaches—emphasizing
predictive accuracy rather than structural interpretation—from both statistical and economic
perspectives. Specifically, we evaluate whether flexible ML methods outperform standard

linear benchmarks in forecasting excess stock returns using a high-dimensional set of firm-

¥ We do not control for industry fixed effects (based on the Fama-French 48 classification) in the final model,
as their influence is largely absorbed by the extensive set of firm-specific predictors included. Moreover, these
fixed effects were filtered out during the LASSO variable selection process, suggesting limited incremental
explanatory power in this context.

"This procedure yields twelve non-overlapping test folds.
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level and macroeconomic predictors in the Canadian equity market. The models considered

are as follows:

1.

where:

Ordinary Least Squares (OLS): This serves as our benchmark model and
minimizes the standard squared error loss across all firm-month observations. We

namely fit a standard linear model of the form:

Gos(z) = Bo + 378

This model includes the complete set of 381 predictors, the variables described in

Table 1 and their interactions.

Least Absolute Shrinkage and Selection Operator (LASSO):* is a penalized
regression method that simultaneously performs variable selection and regularization,
making it particularly effective in high-dimensional settings. By augmenting the
traditional ordinary least squares (OLS) loss function with an £;-norm penalty on the
regression coefficients, LASSO encourages sparsity—shrinking some coefficients
exactly to zero—thereby improving model interpretability and reducing overfitting.
This feature is particularly valuable in financial applications, where predictors tend to
be numerous and potentially highly correlated. Formally, LASSO solves the following

optimization problem:

N T P
. 1
B = argming ﬁz Z(ri,t+1 —Bo— ZiT,tﬁ)z + /12|ﬁj|
j=1

i=1t=1

' Introduced by Tibshirani (1996).
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® Tity1 is the one-month-ahead excess return for firm I at t+1,

* Zi: is P-dimesntional vector of predictor variables,
e 1>0 is a regularization parameter controlling the sparsity of the solution
The )LZ?:ll ,le includes sparsity by penalizing the absolute magnitude of the

coefficients. We select 4 via ten-fold cross-validation to balalnce the trade-off between

model complexity and out-of-sample forecast accuracy.

LASSO provides a strong baseline for evaluating more flexible machine learning
models. However, its reliance on linearity limits its ability to capture complex nonlinear
interactions, which motivates the exploration of richer methods such as ensemble trees and

neural networks (see Gu, Kelly, and Xiu, 2020).

3. Elastic Net (ENet):!%, combines the strengths of LASSO and Ridge regression by
incorporating both #; and €, penalties. This hybrid approach balances variable
selection and coefficient shrinkage, making it especially useful when predictors are
highly correlated—a common feature in financial datasets. Unlike LASSO, which may
select only one variable among a group of correlated predictors, ENet can retain
grouped variables, improving model stability and robustness. The ENet objective

function is defined as:

1 N T P P

~ . 2

B =argmingd—= > > (riees = Bo = 5B)” +A[a Y [B] + (1= ) B2
j=1 j=1

i=1 t=1
where:
® Tit+1 is the one-month-ahead excess return for firm I at t+41,
* 3¢ is P-dimesntional vector of predictor variables,

' Tntroduced by Zou and Hastie (2005).
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e 1>0 is a regularization parameter controlling the sparsity of the solution
e a€]0,1] governs the mix between the LASSO (#;) and Ridge (£,)

penalties

We fix a=0.5 to balance sparsity and shrinkage and use ten-fold cross-validation to

select the optimal 4, following standard practice in empirical finance (e.g., Gu et al., 2020).

ENet serves as an effective compromise between variable selection and multicollinearity
control, offering enhanced predictive performance when the number of predictors is large and
correlated. In our framework, ENet helps mitigate overfitting while preserving information

embedded in grouped features.

4. Partial Least Squares (PLS):'" Extracts ten latent components from the predictor
matrix before performing linear regression. PLS, is a dimension-reduction technique
designed to handle high-dimensional, multicollinear predictor sets. Unlike principal
components regression (PCR), which forms components solely based on the predictor
variance, PLS constructs components that maximize the covariance between the
predictors and the response variable, enhancing predictive relevance. In PLS, the high-
dimensional predictor matrix Z; , € RV*? is decomposed into a set of orthogonal latent
components that capture the directions in the predictor space most associated with
the target variable 7;.;. These components are then used in a standard linear
regression framework. Following prior work (e.g., Gu et al., 2020), we extract ten
latent components from the firm-month predictor matrix and regress one-month-ahead

excess returns on these components

P
Tits1 = Po + Z Yi " PLSkit + €i¢41
=

'" Introduced by Wold (1975).

18



where PLSy ; + denotes the kkk-th latent factor extracted from the predictor matrix Z; ..

PLS is particularly suited for financial applications where the number of predictors
is large and where explanatory variables may be noisy or highly collinear. By projecting
data into a lower-dimensional, supervised space, PLS can improve forecast stability without

sacrificing signal relevance.

5. Random Forests (RF):® Random Forests, are an ensemble learning method that
improves predictive accuracy by averaging the forecasts of multiple regression trees
built on different bootstrap samples of the training data. Each tree captures complex
nonlinear relationships and interactions by recursively partitioning the predictor space
to minimize in-sample squared error. To reduce correlation among trees and improve
generalization, RF randomly select a subset of predictors—commonly referred to as
mtry—to consider at each split. In our implementation, we grow 500 trees and tune
mtry€{P,P/2,P/3} based on validation root mean squared error (RMSE). Each tree
is grown to full depth without pruning, and the final prediction is obtained by

averaging across all trees.

Random Forests are particularly well-suited for financial applications involving high-
dimensional data, as they are robust to multicollinearity, accommodate both continuous and

categorical predictors, and inherently model nonlinearities and higher-order interactions.

6. Gradient-Boosted Trees (XGBoost): are an ensemble method that builds
predictive models in a sequential manner by iteratively fitting shallow regression trees
to the residuals of previous predictions. Each successive tree is trained to correct the
errors of the current model, and the contributions of new trees are scaled by a learning

rate nto prevent overfitting. We implement the XGBoost algorithm (Chen and

®Introduced by Breiman (2001).
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Guestrin, 2016), tuning the learning rate n € {0.01, 0.1} and maximum tree depth d €
{4,6}. To avoid overfitting, we apply early stopping: training halts if validation loss
fails to improve for ten consecutive rounds. The final prediction is the weighted sum

of the outputs from all fitted trees.

XGBoost is well-suited for high-dimensional financial data, offering strong predictive
accuracy through its ability to model nonlinearities and complex interactions while

controlling model complexity via regularization.

7. Feed-forward Neural Networks (NNs): offer a flexible modeling approach
capable of capturing complex, nonlinear interactions between predictors and returns.
Inspired by biological neural systems, these models consist of layers of interconnected
nodes (neurons), where each neuron applies an activation function to a weighted sum
of inputs from the previous layer. We estimate four NN architectures: NN1 (single
hidden layer with 64 units), NN2 (64-32), NN3 (128-64), and NN4 (256-128), each
with ReLU activation functions in the hidden layers. To prevent overfitting, we

implement several regularization strategies:

e Dropout: applied at rates of 10% and 20% to randomly deactivate neurons
during training.

e Weight decay: an , penalty with a coefficient of 10™* is used to shrink
weights.

e Early stopping: training halts if validation loss does not improve for 15
consecutive epochs.

e Learning rate: chosen from {103,5 x 1073}, controlling step size in gradient
descent.

e Batch size: fixed at 256 to improve training efficiency and stabilize updates.
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All networks are trained using stochastic gradient descent (SGD) and evaluated via
out-of-sample mean squared forecast error (MSFE). These architectures offer a lower bound
on the forecasting potential of neural models in our context and serve as a comparison

benchmark against both linear and tree-based machine learning methods.

It is important to note that our approach prioritizes predictive accuracy over structural
interpretation, aiming to evaluate whether flexible machine learning methods can enhance
return forecasting relative to traditional linear benchmarks when applied to a high-

dimensional set of predictors in the Canadian equity market.
4.2 Statistical inference:

This section describes the methods used to estimate model parameters, assess
predictive accuracy, and compare forecast performance across benchmarks. In-sample
coefficient estimates from OLS and Elastic-Net regressions are computed with two-way
clustered standard errors by firm and month, following Petersen (2009). For average monthly
portfolio returns and annualized Sharpe ratios, we use Newey—West heteroskedasticity and
autocorrelation-consistent (HAC) standard errors with 11 lags to account for serial correlation

from overlapping return windows.

For the out-of-sample goodness-of-fit metric R3,s, we report point estimates only,
given its bounded support and non-normal sampling distribution, which renders standard
inference unreliable. To formally evaluate forecast performance, we employ Diebold—Mariano
(1995) tests based on squared prediction error differentials, again using HAC standard errors

with 11 lags to correct for serial dependence.

For instance, in Panel A of Table 2 we present selected in-sample coefficients from

OLS and Elastic-Net models.' Consistent with established asset pricing anomalies, lagged

19 Full estimates for all 381 predictors are available upon request from the authors.
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log market equity (Log me) is negatively associated with future returns, while return
momentum (RET 12 1) shows a positive and statistically significant effect. These results

are robust across specifications.

Table 2 goes here.

Panel B reports Diebold-Mariano statistics comparing each model’s forecast errors to
the OLS benchmark. Negative and significant HAC-adjusted statistics indicate that several
models—notably LASSO, Elastic-Net, and Random Forest—generate superior forecasts. In
line with this, the R3¢ values confirm the enhanced explanatory power of machine learning
models. Together, these results underscore the potential of flexible, high-dimensional methods

to improve return predictability in complex financial environments.
4.3 Results

Before presenting the empirical results, it is important to define the primary out-of-
sample performance metric used throughout the paper: a pseudo out-of-sample RZ,
constructed from the root mean squared error (RMSE) and the unconditional variance of the
target variable. Let {y;, §;}, denote the true and predicted returns in the hold-out sample

(pooled across all cross-validation folds). The RMSE is calculated as:

N
1
RMSE = NZ(yi - 9)?
1=

We scale this error by the variance of the target variable computed over the full sample:

1 _ 1
Var(y;) = - 2L (vi — )%, where y; = 3L, y;,
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The pseudo out-of-sample RZ%is then defined as:

RMSE?
Rjos =1————
Var(y)

which is algebraically equivalent to the forecast-MSPE ratio popularized in Goyal and

Welch (2008) and Campbell and Thompson (2008).

We compute the variance using the full sample rather than fold-specific test sets. This
approach ensures that R3,s remains a single, directly comparable metric across all models
and specifications. For conditional or subsample analyses, we re-estimate the denominator
using the unconditional variance of the target variable within the corresponding subsample,
computed over the original (non-test) observations. This adjustment serves two purposes: it
maintains the meaningful interpretation of the statistic as an MSPE-to-population-variance
ratio, and it reflects the distinct volatility regimes that may characterize different sample
partitions. For completeness and transparency, we also report the raw RMSE alongside the

pseudo-R? (R3os)-

4.3.1. Out-of-sample predictability
4.3.1.1. Full sample analysis

Table 3 reports the out-of-sample forecasting performance across ten predictive
models, evaluated using the root mean squared error (RMSE) and the pseudo R-squared
metric R3,s. These results underscore the inherent difficulty of predicting monthly Canadian
stock returns—predictive signals are modest, yet performance differentials among models are

economically meaningful.

The strongest results emerge from the two shrinkage-based linear models: Elastic-Net

and LASSO, which attain the highest R3,s values (6.20% and 6.18%, respectively), along
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with the lowest RMSEs. Their ability to retain relevant, potentially correlated predictors
while shrinking noise appears particularly well-suited to the high-dimensional and noisy
nature of return forecasting. Deep neural networks also perform competitively—specifically,
the three-layer architectures (NN4 and NN3) explain approximately 6.0% of the out-of-
sample variance——closely trailing the regularized linear models. However, this marginal
improvement suggests that increasing model complexity and nonlinearity yields limited

additional benefit once regularization is applied.

In contrast, simpler nonlinear models perform less effectively. The two-layer neural
network (NN2) and random forest achieve R3¢ values near 5.3%, while the shallow NN1
yields only 5.1%. Gradient-boosted trees (XGB) perform worst, with an R3os of 3.7% —less
than half that of the top shrinkage methods—indicating that boosting and tree depth do not

automatically translate into better performance in this context.

Traditional dimensionality-reduction techniques also underperform. Partial least
squares (PLS) achieves 4.4%, while OLS—without any form of regularization—produces the
lowest among linear methods at 4.3%. These findings confirm that regularization is not only

beneficial but essential in high-noise, high-collinearity environments.

Taken together, the results demonstrate that well-tuned linear shrinkage methods
outperform both traditional and flexible nonlinear approaches, highlighting the value of
regularization in extracting stable predictive signals. Figure 1 visually reinforces these
conclusions, showing a clear performance gap between Elastic-Net, LASSO, and the rest. In
the sections that follow, we investigate whether these patterns hold across firm characteristics

such as size and valuation, or under different market conditions.

Table 3 and Figure 1 go here.
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4.3.1.2. Cross-Sectional Heterogeneity: Firm Size and Investment Style

To assess whether the performance of return prediction models varies systematically
across observable firm characteristics, Table 4 reports out-of-sample R3pg values by firm size
and investment style. Namely, Panel A partitions stocks by market capitalization into Small-
cap (bottom 30%) and Large-cap (top 70%) groups. Predictive accuracy is consistently
stronger for small firms. Elastic-Net and LASSO deliver the highest performance in this
segment, with R3,s values of 12.78% and 12.77%, respectively. Other models—including
moderately deep neural networks (NN3, NN4), Random Forest, and XGBoost—also post
robust performance, ranging from 11.5% to 12.5%. In contrast, model performance
deteriorates sharply in the large-cap segment. The best-performing models (Elastic-Net,
LASSO) explain less than 5% of return variation, and nonlinear models such as XGBoost
and NNT1 fail to deliver meaningful predictive gains. The performance gap between small and

large firms ranges from 6.8 to 8.6 percentage points across models.

To a large extent, these patterns align with the view that small-cap stocks, being more
opaque and subject to greater frictions and limits to arbitrage, present greater opportunities
for forecasting models to extract exploitable signals. Large-cap stocks, by contrast, tend to
trade in more efficient, information-rich environments where return predictability is more

limited.

Table 4 goes here.

In Panel B, we group firms by investment style, classifying stocks as Value (bottom

30% of price-to-book ratio) or Growth (top 30%). The predictive power of all models is highly
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concentrated in the value segment. Neural nets (NN4, NN3), Elastic-Net, and LASSO all
achieve R3,s values exceeding 24%, with the deepest net (NN4) posting the highest
explanatory power at 25.8%. Even simpler models such as OLS and PLS achieve over 23%
predictive fit. In stark contrast, all models produce negative out-of-sample R3,s in the growth
segment—indicating that none outperform the historical mean forecast for these firms. The
performance gap between value and growth stocks exceeds 34 percentage points across
models. This finding corroborates prior evidence that return predictability is concentrated in
value stocks, which are often under-analyzed, mispriced, or more sensitive to fundamental
signals. Growth stocks, on the other hand, behave more like a random walk and remain

largely unpredictable, even for sophisticated models.?

4.3.1.3 Predictability at Annual Horizon

In Table 5, we extend the analysis to a one-year return horizon. As reported in Table
X, only non-linear models achieve positive out-of-sample R3,s values. Random Forest (RF)
leads with an R3,s of 6.2%, followed by the three-layer neural network (NN3) at 5.6%, and
the four-layer NN4 at 4.8%. Shallower networks (NN2 and NN1) deliver lower, yet still
positive, R3,s values of 4.3% and 3.2%, respectively. In contrast, gradient-boosted trees
(XGB) underperform slightly (—0.2%), and all linear models—including LASSO (—2.96%),
Elastic Net (—3.01%), OLS (—4.33%), and PLS (—6.39%)—fail to generate positive forecast
accuracy. Despite the larger raw RMSEs due to the higher volatility of annual returns, the

relative R3,s values remain in line with shorter-horizon results. This reflects the rescaling

2 Tn untabulated results, we assess the temporal robustness of return forecasting models by splitting the out-
of-sample prediction period into two macroeconomically distinct subperiods: the 2010s (2012-2020) and the
early 2020s (2021-2024). This division captures both the post-global financial crisis recovery and low-volatility
environment of the 2010s, as well as the heightened uncertainty and market disruptions associated with the
COVID-19 pandemic and subsequent policy interventions. Importantly, model parameters are held constant
throughout the entire sample to isolate the effect of changing macroeconomic regimes on predictive performance.

While detailed results are omitted for brevity, they are available upon request.
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by the increased variance of the one-year return target, which compresses gains in

predictability.

Table 5 goes here.

Panel B of Table 5 examines cross-sectional heterogeneity by firm size. Small-cap
stocks continue to exhibit greater predictability than large caps, though the gap is modest.
For small firms, RF reaches 9.2% R3,s , NN3 7.5%, NN4 6.8%, and NN2 6.1%. Among large
firms, the same models yield between 4.3% and 5.5%. While linear models collapse on large
caps (e.g., LASSO and Elastic Net both around —5.6%), they maintain mildly positive
performance for small caps (#2.5%). Thus, while small-cap returns remain more predictable,

non-linear models still outperform within the large-cap segment.

Panel C highlights style effects based on valuation. The disparity between value and
growth stocks is pronounced. In the value portfolio, all non-linear models post strong
performance—NN3 and NN4 reach 21.8% and 21.2% R3,s , respectively, followed by RF at
20.6% and NN2 at 19.1%. Linear methods also perform reasonably well, all exceeding 5%
R3,s . Conversely, in the growth segment, no model achieves positive predictability; all R3
values are negative, ranging from —7.1% for RF to —12.2% for XGB. This yields substantial

style gaps of 18-31 percentage points.

In sum, the evidence in Table 5 indictes that non-linear models dominate at the annual
horizon. Predictability is strongest among small-cap and value stocks. However, no model
delivers consistent, horizon-invariant performance across firm size and investment style

segments.
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4.4 Which Predictors Matter?

To better understand the sources of return predictability, we next investigate the
relative importance of the predictors included in our models. Given the breadth of the feature
set, we differentiate between two broad categories: macroeconomic indicators and firm-
specific characteristics. This analysis enables us to identify which variables contribute most
significantly to forecasting performance, and whether the predictive signal is primarily driven

by aggregate economic conditions or idiosyncratic firm-level information.

In this analysis, we focus on the eight models most relevant for interpretability—six
machine learning methods (NN1-NN4, Random Forest, and XGBoost) and two penalized
linear models (LASSO and Elastic Net). We exclude classical linear benchmarks, including
PLS and OLS variants, from the heatmap visualization, as our discussion centers on the
machine learning approaches that have demonstrated the strongest predictive performance.
Among linear models, only LASSO and Elastic Net are retained to serve as regularized
baselines. Results are visualized in the heatmap “Macroeconomic Variable Importance”

(Figure 2).

Figure 2 goes here.

We note that for the two shrinkage regressions the pattern remains highly
concentrated. Elastic-Net and LASSO both give their maximum normalised weight (1.00) to
OECD leading-indicator growth and assign the next-highest scores to the CAD / USD
exchange rate (~ 0.75) and M2 growth (~ 0.70). Inflation, labour-market slack, volatility and

every equity-supply or trading variable receive values below 0.35, indicating that the
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penalised linear models continue to collapse the macro set to one dominant cyclical gauge

plus a liquidity-currency pair.

The neural networks distribute importance more broadly but still reveal a clear
hierarchy. In all four nets the single strongest series is 30-day S&P/TSX realised volatility,
which attains the maximum score in every architecture. The shallow configurations (NN1,
NN2) complement volatility with sizeable weight on economic-policy uncertainty, the
exchange rate and short-rate returns; NN2 in particular draws heavily on the term spread
and on high-frequency equity-market signals such as TSX trading-volume growth and net
share issuance. The deeper nets (NN3, NN4) keep volatility at the top while adding moderate
emphasis to relative-performance momentum, inflation and capacity-utilisation growth. No
single variable other than volatility dominates these deeper networks; instead they rely on a

mixture of cyclical, rate-sensitive and market-microstructure measures.

The tree ensembles pivot to yet another subset. Random Forest and XGBoost both
score the unemployment rate at 1.00, making labour-market slack their primary macro input.
The exchange rate follows at roughly 0.90 in Random Forest and 0.70 in XGBoost, while the
OECD index still contributes (0.57 and 0.88, respectively). Short-rate returns and capacity-
utilisation growth offer smaller support, and most other series—including the money supply,
term spread and equity-market additions—are effectively ignored (normalised scores near
zero). This narrow, high-impact selection is characteristic of trees’ tendency to pick a handful

of decisive non-linear thresholds.

These findings underscore that there is no single “best” macro predictor. Linear
shrinkage models gravitate toward the leading indicator and a currency-liquidity factor,
neural nets elevate equity-market volatility while blending in several complementary signals,

and tree-based learners focus on labour-market conditions and exchange-rate moves. Each
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algorithm’s inductive bias therefore channels a different macro signal into return forecasts,
reinforcing the value of ensemble approaches that blend these complementary perspectives.

We next examine which firm-level characteristics most influence annual return

forecasts. !

Starting from the full, cleaned design matrix, we compute variable importance
at the fold level for each model: absolute coefficients for Elastic Net and LASSO, permutation-
based loss increases for neural networks, gain-based splits for XGBoost, and mean-decrease-
in-MSE for Random Forest. These importance scores are normalized to the [0,1] range within
each fold and then averaged across the rolling forecast windows. Table 6 presents the top 15

predictors for each model, which together account for at least 54.3% (Random Forest) of

total model-level importance.

Table 6 goes here.

Across all eight models, liquidity and trading-friction variables dominate the
predictive structure of twelve-month TSX excess returns. In the penalized regressions (Elastic
Net and LASSO), six-month idiosyncratic volatility (ivol capm_60m) and the 21-day zero-
trade ratio (bidaskhl 21d) are the top-ranked features, followed closely by net working
capital scaled by sales (Sale_nwc) and one-year cumulative return (RET_12_1). These four
variables consistently appear in the top five across all neural networks (NN1-NN4) and tree-
based models (XGBoost and Random Forest), alongside turnover over 126 trading days
(turnover_ 126d) and the O-score distress measure. In total, 12 of the 15 most influential
predictors recur in every architecture, underscoring the stability of liquidity and past-return

effects across diverse estimation paradigms.

2 'We do not report the heatmap for firm-level predictors due to the large number of variables involved.
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Model-specific distinctions nonetheless emerge. The shrinkage regressions produce
nearly identical rankings—unsurprising given their shared regularization framework. The
shallow neural network (NN1) shifts greater importance toward working-capital ratios and
volatility-adjusted issuance metrics (e.g., EQNPO GRI1A). Deeper networks (NN3, NN4)
give increased weight to accrual-based signals (Eqnetis grla), leverage (debt_bev), and
structural distress (Z_score). The tree-based models surface unique non-linear drivers,
including firm age, analyst forecast dispersion (earnings variability), and long-horizon return
skewness (RET_36_1). These differences highlight the capacity of trees to extract signal

from discrete and interaction-heavy variables often overlooked in linear models.

In summary, while liquidity, volatility, and investment-related variables constitute a
common predictive core, each algorithm’s inductive bias subtly reshapes the importance
hierarchy—revealing how different architectures extract and prioritize firm-level information

for return forecasting.
4.5 Robustness Test: Alternative Model Evaluation

In this section, we go beyond conventional out-of-sample performance metrics—such
as R3os and RMSE—to assess the statistical robustness of our forecasting models. These
measures, while informative, can obscure important performance differentials, especially
under varying macroeconomic conditions. We therefore conduct formal tests of superior
predictive ability (SPA) to evaluate whether observed gains in forecast accuracy are

statistically meaningful.

Specifically, we implement two frameworks: (i) the Unconditional SPA (USPA) test
of Hansen (2005), which evaluates average loss differentials over the full sample; and (ii) the
Conditional SPA (CSPA) test of Li et al. (2020), which examines whether model performance

holds under different macroeconomic regimes. Both tests are applied using squared-error loss.
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Table 7 reports the number of pairwise model rejections under the USPA and CSPA
frameworks. The USPA row summarizes how often each model is significantly outperformed
by others across 45 one-versus-one comparisons. The following rows break down CSPA
rejections across 13 macroeconomic conditions, including inflation, exchange rates, economic
policy uncertainty (EPU), and interest rate changes. Each cell reflects how frequently a given
model is rejected under a specific regime, while the final column aggregates rejections across

all regimes.

Table 7 goes here.

The USPA results indicate that NN2 and NN3 are the most robust models, each
incurring only 4 rejections, compared to 5 for Elastic Net and LASSO, 6 for OLS, PLS, and
NN4, 6 for Random Forest, and 7 for XGBoost. Even the single-layer NN1 performs relatively

well, with just 3 rejections.

The performance gap widens in the conditional setting. Under CSPA, NN3 and NN2
are rejected only 28 and 31 times, respectively, across 260 regime-specific tests—substantially
lower than the 114-123 rejections accumulated by Random Forest, XGBoost, and all linear
models. These results demonstrate that neural networks, particularly NN3 and NN2,
maintain forecast superiority even when macroeconomic conditions vary, while linear and

tree-based models are far more sensitive to such shifts.

These robustness checks offer two key insights. First, models with similar average
R3,s may differ significantly in their statistical reliability. Second, model performance is
regime-dependent—OLS, PLS, Elastic Net, and Random Forest often lose their predictive

advantage under inflationary, uncertain, or capacity-constrained environments. Taken
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together, the evidence positions NN3 as the most statistically robust model, followed closely
by NN2. These architectures not only lead in average accuracy but also deliver stable and

resilient forecasts across a broad range of macroeconomic conditions.

4.6 Dissecting the Leading Model’s Predictive Signals

To uncover the economic drivers underlying the performance of our top-performing
annual-horizon model-——Random Forest—we analyze its variable importance across firm size
segments. We freeze the model trained on the full sample and apply it separately to test
observations from the bottom 30% (small-cap) and top 70% (large-cap) of the market
capitalization distribution. Within each segment, we permute one predictor at a time, re-
estimate returns using the frozen model, and record the change in root-mean-squared error
(ARMSE). These values are scaled to the [0,1] interval within each bucket, and we compute
the difference (Small — Large) to identify variables more important for small versus large

firms.

Panel A of Figure 3 displays the top 15 predictors with the largest absolute differences.
Panel B presents the same analysis at the theme level, grouping predictors into ten broad
economic categories (excluding interaction terms). At the variable level, small-cap
predictability is primarily driven by short-horizon profitability and price momentum.
Permuting the three-month change in common shares outstanding (CHCSHO), asset
turnover growth, twelve-month momentum (both absolute and relative to the S&P/TSX),
standardized ROE, and free cash flow to enterprise value materially increases RMSE for

small firms (by 40-60 basis points) but has negligible effects on large caps.

Figure 3 goes here.
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In contrast, large-cap forecasts rely more on balance sheet structure and
macroeconomic indicators. Variables such as headline inflation, composite leading indicator
(CLI) growth, EBITDA-to-sales, debt-to-book equity, asset tangibility, and SG&A growth
meaningfully affect large-cap predictions, raising RMSE by 25-35 basis points, with minimal
small-cap impact. Measures of trading activity and external financing (e.g., turnover, TSX

net issuance, and sales-to-working-capital ratio) also exhibit a large-cap tilt.

Theme-level results reinforce this segmentation. Small-cap forecasts are most sensitive
to liquidity-related earnings, volatility, and momentum signals, which together explain
approximately 60% of the total ARMSE in that segment. Large-cap forecasts are more
influenced by valuation, leverage, classical risk factors, and firm characteristics (e.g., size,
age), each contributing 20-30 basis points to forecast error. Growth and macro themes display

limited size-based differentiation, suggesting uniform macro exposure at the annual horizon.

Overall, these findings indicate that return predictability stems from different
economic channels across firm size segments. For small caps, predictability reflects frictions
in microstructure and delayed incorporation of fast-moving fundamentals. For large caps, it
arises from balance sheet fundamentals, systematic risk exposure, and valuation. These
patterns align with heterogeneous-attention theories: greater analyst coverage and liquidity
facilitate rapid information incorporation for large firms, whereas small firms remain prone

to inefficiencies tied to trading frictions and incremental profitability updates.
4.7 Portfolio analysis

So far, our evaluation of predictive performance has been purely statistical, based on
out-of-sample R? and formal hypothesis testing. We now assess the economic value of return

forecasts by examining their implementability in portfolio strategies that reflect practical
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constraints in the Canadian market, such as short-selling limitations. Specifically, we use
each model’s one-month-ahead predictions to rank stocks and compute realized returns based
on actual one-month-ahead total returns (RET 1 0). This exercise translates predictive
accuracy into economic terms, comparing the performance of value-weighted and equal-
weighted long—short portfolios, as well as a long-only top-decile strategy, over the period

January 2012 to December 2023.
4.71. Portfolio sorts

Monthly-rebalanced portfolios: Table 8 reports the results of a total return
backtest using one-month-ahead forecasts over the period January 2012 to December 2023.
At each month-end, stocks are sorted into deciles based on predicted total returns. We
evaluate three portfolio strategies: (i) a long—short strategy that buys the top decile and
shorts the bottom decile, constructed using both value and equal weights; and (ii) a long-
only strategy that invests in the top decile only. For each strategy, we report the average
monthly return (Avg, %), monthly volatility (Std, %), annualized Sharpe ratio (scaled by
V12), skewness, kurtosis, maximum drawdown (Max DD, %), and worst single-month return

(MinMonthly, %).

Table 8 goes here.

All ten forecasting models generate positive average monthly long—short spreads under
value-weighting, though performance levels and statistical significance vary. XGBoost
delivers the highest mean spread, at 1.05% per month (o ~ 4.88%, Sharpe ~ 0.75, NW ¢ =
2.58), followed by NN1 at 0.92% (Sharpe ~ 0.69, ¢t = 2.67) and Random Forest at 0.81%

(Sharpe ~ 0.64, t = 2.20). Regularized linear models also perform competitively: LASSO and
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Elastic Net each yield spreads of approximately 0.74% (Sharpe ~ 0.57, t ~ 1.70). Mid-depth
neural networks (e.g., NN3 at 0.85%) and the deepest model (NN4 at 0.31%) occupy the
middle and lower range, respectively. The OLS benchmark generates the lowest spread

(0.44%, Sharpe ~ 0.30, t = 1.03), consistent with its relatively weak predictive performance.

Switching to equal-weighting increases all spreads by approximately 10 to 20 basis
points. XGBoost again leads with a 1.19% average monthly spread (Sharpe ~ 0.91, NW ¢ =
3.15), followed by NNI at 0.98% (Sharpe ~ 0.77, ¢t = 2.67) and Random Forest at 0.94%
(Sharpe ~ 0.74, t = 2.55). LASSO and Elastic Net each deliver spreads of approximately
0.82% (Sharpe ~ 0.58), while OLS posts a lower 0.55% (Sharpe ~ 0.40, ¢ ~ 1.37). NN3

performs comparably at 0.84%, whereas NN4 trails at 0.34%.

The long-only leg amplifies gross returns substantially. XGBoost again achieves the
highest return, averaging 1.61% per month (o ~ 7.04%, Sharpe ~ 0.79, t = 2.73). Elastic Net
and LASSO follow closely at 1.53% (Sharpe ~ 0.74, t ~ 2.56). NN1 and NN3 post 1.49%
(Sharpe ~ 0.72, t = 2.50) and 1.36% (Sharpe ~ 0.62, t ~ 2.13), respectively. Random Forest
yields 1.46% (Sharpe ~ 0.75, ¢t = 2.58), while OLS and PLS generate 1.19% and 1.16%,
respectively (Sharpe ~ 0.57, ¢ ~ 1.91). The deepest networks—NN2 (1.23%) and NN4

(0.97%)—finish slightly behind.

In summary, flexible nonlinear models (XGBoost, NN1, NN3) consistently outperform
linear benchmarks across both long—short and long-only strategies. The relatively weaker
performance of NN4 suggests diminishing returns to network depth in this setting. See Figure
4 for a visualization of the annual portfolio strategy performance across models and weighting

schemes.

Figure 4 goes here.
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Annual Portfolio Backtests: To evaluate the effectiveness of the return forecasts
at a longer horizon, we conduct an annual portfolio backtest based on one-year-ahead
predictions. Each January from 2012 to 2023, we rank all stocks according to each model’s
forecast and implement three strategies using the resulting cross-sectional rankings: (i) a
long—short portfolio that buys the top decile and shorts the bottom decile using both value
and equal weighting; and (ii) a long-only strategy that invests in the top decile. We hold
each position for 12 months and then compute the realized total return over the horizon t+1
to t12. We report the average annual return (Avg, %), annualized standard deviation (Std,
%), Sharpe ratio (unscaled), and Newey—West t-statistic with an 11-month lag. Results are

presented in Table 9.

Table 9 goes here.

Across all three strategies, the most flexible models generally deliver the highest risk-
adjusted returns. In the value-weighted long—short portfolios, the three-layer neural network
(NN3) leads with an average annual return of 20.3% (o ~ 21.1%, Sharpe ~ 0.89, t ~ 5.02),
followed by NN4 at 18.0% and the shrinkage methods—Elastic Net and LASSO—at
approximately 18.7%-18.9%. Random Forest lags behind with a 14.0% return (Sharpe ~ 0.50,
t ~ 4.01). Switching to equal-weighting amplifies both returns and Sharpe ratios across the
board. NN3 again tops the performance table at 22.1% (o ~ 20.9%, Sharpe ~ 0.99, t ~ 5.46),
closely matched by LASSO and Elastic Net. Interestingly, even the basic OLS model achieves

a competitive return of 19.8% (Sharpe ~ 0.73, t ~ 4.97), highlighting that equal-weighting
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increases the contribution of smaller firms and sharpens alpha signals from extreme forecast

ranks.

In long-only portfolios, absolute returns rise further, albeit with increased volatility.
Elastic Net and LASSO again perform strongly, generating 26.9%-27.0% annual returns
(Sharpe ~ 0.59, t ~ 4.88-4.91), with NN3 just behind at 26.0% (Sharpe ~ 0.68, t ~ 4.11).
Several models—including OLS, PLS, and XGBoost—cluster near 24%-24.6% (Sharpe »

0.56-0.58), while Random Forest trails slightly at 23.1%.

Notably, XGBoost and NN3 deliver the strongest Newey—West t-statistics under equal
weighting—~6.31 and 5.46, respectively—signaling robust statistical performance even in
relatively noisy one-year horizons. Maximum drawdowns are largest in the long-only
strategies, particularly for LASSO (~ 37.7%) and NN4 (~ 36.9%), but remain moderate in

long—short portfolios, where the short leg provides meaningful downside protection.

To recap, two core insights emerge from this analysis: first, moderately deep neural
networks (NN2-NN4) and shrinkage regressions (LASSO, ENet) consistently rank among the
best performers, suggesting they strike an effective trade-off between model complexity and
overfitting. Second, equal-weighted long—short portfolios outperform value-weighted ones on
both return and risk-adjusted metrics, implying that small-cap stocks drive a disproportionate
share of forecastable alpha. Even OLS delivers economically meaningful performance when
applied to the extremes of the predicted return distribution—demonstrating that forecast

rank, not precision, is the primary driver of cross-sectional portfolio value.
4.7.2 Performance by Investment Style

In this section we investgate whether model performance varies systematically across

investment styles. Specifically, we partition the universe each month into value stocks (top
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30% by book-to-market) and growth stocks (bottom 30%), and implement long-only top-

decile portfolios within each group. Results are reported in Table 10.

Table 10 goes here.

In the growth-stock subsample (Panel A), XGBoost stands out as the top performer,
delivering an average excess return of 1.22 % per month (o » 7.44 %, Sharpe ~ 0.57, NW t
~ 1.96). Regularized linear models follow close behind: LASSO posts 0.99 % pm (Sharpe ~
0.46, NW t ~ 1.59) and Elastic Net 0.97 % pm (Sharpe ~ 0.45, NW t ~ 1.56). Among the
neural networks, the three-layer network (NN3) generates 0.86 % pm (Sharpe ~ 0.43, NW t
~ 1.49), while the shallow one-hidden-layer model (NN1) delivers a more modest 0.81 % pm
(Sharpe ~ 0.37, NW t ~ 1.28). Traditional linear benchmarks are comparable: OLS earns 0.98
% pm (Sharpe ~ 0.46, NW t ~ 1.59) and PLS 0.86 % pm (Sharpe ~ 0.39, NW t ~ 1.36).
Random Forest lags at 0.75 % pm (Sharpe ~ 0.34, NW t ~ 1.17). Increasing network depth
does not help: NN2 slips to 0.60 % pm (Sharpe ~ 0.30, NW t ~ 1.03) and the four-layer NN4
is essentially flat at 0.10 % pm (Sharpe ~ 0.05, NW t ~ 0.17). This evidence appears to favour

boosted trees and simpler, regularised linear models over capacity-heavy neural architectures.

In the value-stock subsample (Panel B), forecast accuracy improves markedly. NN1
again leads, posting an impressive 2.99% per month (volatility ~ 9.06%, Sharpe ~ 1.14, NW
t ~ 3.94), followed by Random Forest (2.65%, Sharpe ~ 0.99, t ~ 3.41) and PLS (2.47%,
Sharpe ~ 0.91, t ~ 3.14). OLS and XGBoost also deliver robust returns near 2.35%-2.37%
(Sharpe ~ 0.88 and 0.79, respectively). LASSO and Elastic Net yield similar performance
(~2.30%, Sharpe ~ 0.85). Mid-depth networks (NN2, NN3) produce slightly lower returns

(~1.97%, Sharpe ~ 0.70-0.73), while NN4 trails at 1.69% (Sharpe ~ 0.61). In sum, value stocks
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exhibit richer cross-sectional predictability, and both nonlinear and regularized linear models
are effective in extracting that signal. However, excessive model complexity, as seen with

NN4, tends to degrade performance.
4.7.3. Additional Cross-Sectional Analyses

We further test the robustness of our findings by conditioning on two dimensions of
market frictions: information asymmetry and trading volume. Table 11 reports results for
both dimensions. To evaluate performance under different information environments (Panel

A), we sort stocks each month into high- and low-asymmetry groups using the cross-sectional
median of the 21-day bid-ask spread proxy (BIDASKHL_21D).?? Within each group, we

form top-decile, value-weighted long-only portfolios. Model performance improves
substantially in the high-asymmetry group. For instance, Random Forest’s mean return
nearly triples—from 0.66% to 1.89%—boosting its Sharpe ratio to 0.85 and NW t-stat to
2.93. XGBoost improves from 1.18% to 1.93%, yielding the highest Sharpe ratio at 0.90 (t ~
3.11). Elastic Net and LASSO also show sharp gains: mean returns rise from 0.82% to over
2.10%, Sharpe ratios nearly double to 0.90, and t-stats breach 3.0. Shallow networks like NN1
benefit modestly (Sharpe ~ 0.67), while deeper networks such as NN4 see performance
deteriorate, consistent with earlier results. These findings underscore the advantage of

nonparametric and regularized models in information-scarce environments.

Table 11 goes here.

2 Following prior literature (e.g., Heflin and Shaw, 2000; Amihud, 2002; Attig, Fong, Lang, and Gadhoum,
2006), we proxy information asymmetry using the relative bid—ask spread.
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In Panel B, we examine whether predictive efficacy varies by market liquidity. 23
Stocks are sorted each month by lagged 21-day trading volume into high- and low-volume
groups, and top-decile, value-weighted long-only portfolios are implemented in each segment.
A distinct pattern emerges: low-volume stocks yield superior risk-adjusted returns across
nearly all models. Elastic Net’s mean return falls slightly in the low-volume segment (2.19%
to 1.57%), but lower volatility boosts the Sharpe ratio from 0.57 to 0.72. LASSO and PLS
display similar dynamics. Neural networks respond more strongly to the lower volatility
regime. NN1’s Sharpe nearly triples to 0.74, while NN2’s performance moves from a loss to a

1.49% gain (Sharpe ~ 0.75). Even NN4 sees its Sharpe increase, albeit modestly.

Tree-based models show mixed reactions. Random Forest performs best in low-volume
stocks (1.87% return, Sharpe ~ 0.74), while XGBoost’s highest nominal return is in the high-
volume group (2.39%), yet its Sharpe remains higher in the low-volume tier (0.84 vs. 0.69).
OLS mirrors the behavior of regularized models: slightly lower returns in thinly traded stocks

are offset by reduced volatility, resulting in improved risk-adjusted performance.

In sum, evidence in Table 11 indicates that predictive signals manifest differently
across liquidity regimes. In thinly traded stocks, models with built-in regularization or simpler
architectures perform best. In contrast, high-volume stocks offer larger nominal returns but
greater risk; only highly flexible models like XGBoost manage to harness that return

effectively. Panels A and B of Figure 5 visualize the results of Table 11.

Figure 5 goes here.

% We consider the role of trading volume, given its longstanding association with price discovery and investor
disagreement (Harris and Raviv, 1993). Wang (1994) further links volume behavior to heterogeneity in investor
beliefs.
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4.8 The Role of Anonymous Trading in Return Predictability

In a novel extension of our analysis, we examine whether the structure of anonymous
trading activity enhances the cross-sectional predictability of stock returns. Specifically, we
examine two key facets of anonymous trading behavior: (i) the net volume of anonymous
buying (NET_ANO_BUY_VOLUM), and (ii) the dispersion of broker-level anonymous

order flow (VOLATILITY_ BROKER_VOLUM).

These dimensions are motivated by theoretical and empirical research linking trading
activity, information asymmetry, and price discovery. Anonymous trades, by design, conceal
trader identity and are frequently used by informed institutional investors to avoid revealing
private signals. We thus posit that anonymous buying is more likely to reflect informed
trading than anonymous selling, consistent with the empirical finding that buy orders tend
to be more informative than sell orders (Madhavan, 1995; Keim and Madhavan, 1995). This
asymmetry may arise because purchases typically signal selective optimism or stronger
preferences for individual securities, while sales may reflect portfolio rebalancing or liquidity

needs rather than informational advantage.

The dispersion in anonymous trading across brokers captures the heterogeneity of
private information and belief disagreement among informed traders. Building on Anderson,
Ghysels, and Juergens (2005), we hypothesize that differing broker-level anonymous flows
may reflect access to distinct information sets or divergent interpretations of public and
private signals. This heterogeneity can be understood as a proxy for the distribution of beliefs
about future returns across market participants. Chordia et al. (2001) show that the volatility

of trading activity may proxy for investor clientele heterogeneity, which can in turn affect
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asset pricing dynamics. To formally quantify this dispersion, we construct a cross-sectional
volatility measure of anonymous trading imbalance at the broker level:

2

N 21V

ATl;;s — ATI;

Sigmaf’l = Z( Yt lt)
£ N

j=1
where ATI;j; is the anonymous trading imbalance for broker j, stock i, and month t, and ATI;,
is the average imbalance across all NNN brokers actively trading stock i during t. A higher
value of Sigmafi’’ indicates greater dispersion and thus greater heterogeneity of private
information or expectations. Informed trading that is more fragmented across brokers may

reflect greater uncertainty or disagreement, which could dampen the aggregate predictive

signal.

To assess the return implications of these two trading conditions, we perform monthly
portfolio sorts. For each month, we split the stock universe at the median value of the relevant
proxy—either net anonymous buying or broker dispersion—and re-rank stocks within each
subset based on the model’s predicted return. We then construct value-weighted, top-decile

long-only portfolios, holding positions for 12 months.

Tables 12 present the average monthly return, annualized volatility, and Newey—West
t-statistics for the models in each sub-sample. The results are striking. When net anonymous
buying is elevated (Panel A), model performance improves substantially. Average monthly
returns increase by 60 to 80 basis points across most forecasting models, while Sharpe ratios
also rise despite modest increases in volatility. For instance, Elastic Net improves from 1.48%
to 2.13% per month, with its Sharpe ratio nearly doubling to 0.88. Similar gains are observed
for LASSO, XGBoost, and shallow neural networks (NN1-NN3). Even models with previously
weaker performance—such as Random Forest and deeper architectures like NN4—register

improvements, albeit to a lesser extent.
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Table 12 goes here.

These findings suggest that concentrated hidden buying leaves an identifiable
footprint in price dynamics that both linear and non-linear predictive models can exploit.
Importantly, they also point to the salience of microstructural frictions and trading
anonymity as conditioning variables in return predictability. Future research may further
disentangle whether the observed patterns are driven by informed trading, strategic order

placement, or institutional preferences under opacity.

In Panel B, we examine whether broker-level dispersion in anonymous order flow—
our proxy for the heterogeneity of informed trading—modulates return predictability. The
results in Table 16 show that models with flexible learning architectures benefit
disproportionately from higher dispersion. When broker disagreement is high, Random
Forest’s average return rises from 1.40% to 2.09%, and its Sharpe ratio climbs to 0.97.
XGBoost exhibits a similarly pronounced gain, with its Sharpe ratio exceeding one. NN2 and
NN3 also realize substantial improvements, posting return increases of 70-90 basis points and

materially stronger risk-adjusted performance.

By contrast, penalized regressions and PLS regressions experience moderate
improvements, while OLS and NN4 exhibit only marginal changes. These patterns suggest
that greater heterogeneity in broker-level anonymous activity creates a richer and more
complex information environment, which interaction-based learners—such as tree-based
models and mid-depth neural networks—are better equipped to exploit. In contrast, linear
models and deeper networks may underperform in these settings, either due to their limited

flexibility or overfitting sensitivity, respectively.
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Taken together, the findings underscore that the efficacy of anonymous trading signals
is highly state-dependent. Returns are strongest when anonymous buy-side activity is
elevated but not pervasive, and when broker-level order flows are highly dispersed—
conditions indicative of both informational intensity and belief heterogeneity. Regularized
linear models and moderate-complexity neural networks can translate such structure into
stable profits, while higher-capacity models—such as ensemble learners—offer enhanced
upside only in dispersion-rich regimes, albeit with higher volatility. These insights suggest
that tilting predictive strategies toward stocks with concentrated but non-uniform anonymity
and broker heterogeneity can significantly improve long-only portfolio performance while

mitigating estimation risk. Figure 6 visualizes the findings reported in Table 12.

Figure 6 goes here.

5. Conclusion

This study provides the first comprehensive evaluation of machine learning methods
for forecasting the cross-section of Canadian equity returns. Using a rich set of firm-level and
macroeconomic predictors, we benchmark a diverse suite of models—including penalized
linear methods, tree-based algorithms, and neural networks—against traditional linear
forecasting approaches. Our analysis demonstrates that moderately flexible nonlinear models,
particularly shallow neural networks and gradient-boosted trees, offer consistently superior
performance across both statistical and economic dimensions. Return predictability is
strongest in small-cap and value stocks, where information frictions and delayed price

adjustment create conditions favorable to machine learning. By contrast, simpler regularized
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methods such as Elastic Net and LASSO perform more reliably in growth stocks and large

caps, where signal-to-noise ratios are lower and data-generating processes are more linear.

A novel contribution of our study is the identification of market microstructure
variables—particularly net anonymous buying and broker-level dispersion in order flow—as
critical sources of forecastable alpha. These features, indicative of informed institutional
trading and information heterogeneity, substantially improve model accuracy and portfolio
performance, especially for flexible, interaction-based learners. The effectiveness of such
models, however, is sensitive to model depth and firm-level liquidity, reinforcing the

importance of matching model architecture to market conditions.

From a practical perspective, our findings underscore the implementability of ML-
based return forecasts. Even under long-only constraints, top-decile portfolios constructed
using ML signals yield materially higher Sharpe ratios and excess returns than traditional
approaches. These results suggest that ML is not a substitute for economic theory but a
complementary tool—particularly valuable in high-dimensional, high-noise settings where
conventional models underperform. While our analysis centers on the Canadian equity
market, the broader implications extend to other contexts, especially emerging markets where
structural inefficiencies and microstructure frictions are more pronounced. As financial data
becomes increasingly complex and heterogeneous, machine learning is poised to play a central
role in both academic asset pricing research and applied investment strategy. More broadly,
our findings support the growing call for ML integration in addressing novel questions in
finance—ranging from climate risk pricing and ESG-related mispricing to the influence of
retail sentiment and algorithmic trading on return dynamics. Future research should aim not
only to enhance predictive accuracy, but also to interpret ML-generated signals and link them

to underlying economic mechanisms. Doing so will help bridge the gap between data-driven
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inference and theory-consistent modeling, a critical step toward the broader adoption of ML

techniques in financial economics.
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Table 1. Variable Descriptions & Descriptive Statistics

This table provides detailed descriptions of all firm-level, capital market, and macroeconomic variables used in the analysis,

along with their respective data sources.

Variable Description Source Mean  Stdev  Skewness

Firm Level Variables

AP _TURNOVER Account Payables Turnover Jensen et al. (2023) 5.7829 54531 2.3241
AT GR1 Sales Growth lyr As above 0.2226  0.6773 3.8665
BE ME Book Equity scaled by Market Equity As above 0.8381  0.8519 3.0092
BETA_60M 60-month rolling market beta, As above 0.9357  0.6877 0.5244
BIDASKHL_ 21D The high-low bid-ask spread As above 0.0103  0.0081 2.1867
CASH BEV Cash and Short-Term Investments scaled by BEV As above 0.397 1.302 6.3396
CASH GRI1A Gross Profit Change 1yr As above -0.0091  0.1397 -0.131

CHCSHO __12M Change in Shares - 12 Month As above 0.0932  0.3063 4.3949
CHCSHO_3M Change in Shares - 3 Month As above 0.0193  0.0794 4.9619
COSKEW 21D Decimal Coskewness (coskew 21d) As above -0.0275  0.329 -0.0881
DEBT BEV Total Debt scaled by BEV As above 0.2986 0.277 1.4287
DIV_GRI1A Dividend Payout Ratio Change lyr As above -0.0059  0.0319 -0.9584
DIV_ME Total Dividends scaled by ME As above 0.0233  0.0452 3.401

EBITDA SALE Operating Profit Margin before Depreciation As above -2.3364  7.5068 -2.6843
EMP GR1 employment groth As above -0.2351 04749 0.0125
EQNETIS GRIA Equity Net Issuance Change 1yr As above -0.0456  0.2298 -0.8852
EQNPO_1M Net Equity Payout - 1 Month As above -0.0051  0.0334 -5.0036
EQNPO_GRIA Equity Net Payout Change lyr (eqnpo__grla) As above -0.0643  0.2428 -1.1059
FCF ME Free Cash Flow scaled by ME As above -0.0715  0.3219 -2.0217
INT DEBT Interest scaled by Total Debt As above 0.0938  0.2401 7.1379
INTAN_GRI1A growth in intangible As above -0.0109  0.0963 -0.4959
ISKEW_CAPM 21D Idiosyncratic skewness from the CAPM As above 0.1666  0.9337 -0.2342
IVOL CAPM 60M Idiosyncratic volatility from the CAPM (60 months) As above 0.1169  0.0744 1.539

LOG ME Log market value of equity As above 5.6899  1.7655 0.3156
NWC_AT Working Capital scaled by Assets As above 0.1597  0.2157 0.5244
O SCORE Ohlson O-Score As above -3.5006  3.3521 0.7711
RESFF3 12 1 Residual Momentum - 12 Month As above -0.1144  0.3744 -0.5673
RET 12 1 Price momentum t-12 to t-1 (ret 12 1) As above 0.1674  0.6798 2.0748
RET 3 1 Price momentum t-3 to t-1 (ret_3_1) As above 0.022 0.2045 0.6896
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RET 36 1 Momentum 1-36 Months (ret 36 1) As above 0.6502 2.1196 3.7874

ROE_BE_STD ROE Volatility As above 0.1204  0.2898 5.6292

SALE_NwWC Sales scaled by Working Capital As above 23.3995  88.6359 6.7261

SGA_GR1 Cost of Goods Sold Growth 1yr As above 0.0277  0.5784 2.3793
Stock risk premium, the difference between a stock’s total return and the CPMRC and atthors’

SRPP_TSX risk-free rate, proxied by the one-month return on three-month ) 0.0095  0.1284 0.692

. calculations.

Government of Canada Treasury bills

TANGIBILITY Tangibility Jensen et al. (2023) 0.6202  0.2711 -0.2212

TURNOVER_126D Share turnover As above 0.0022  0.0021 1.7558

Z SCORE Altman Z-Score As above 6.0153  14.7842 5.6455

Macro Variables

CAP UTL GR Growth' in capz?cit).f utilization, which captures the percentage of CANSIM 00008 0.0148 13861
production capacity in use
The growth in the composite leading indicator, an OECD index designed

CLI_GR to anticipate turning points in business cycles by tracking fluctuations in www.oecd.org -0.0001  0.0024 -0.0387
economic activity relative to its long-run trend
A news-based index developed by Baker et al. (2016) that reflects

EPU (LOG_EPU) uncertainty surrounding government actions that affect the economic ~ www.policyuncertainty.com  4.8343  0.6186 0.1314
environment.

FISHER PRICE CR pllallge in the F~isher C(ﬁ)HlHlF)("hty Index, which reflects price movements CANSIM 00026 0.0505 0.5204
in 26 key Canadian commodities sold globally

INFLATION The inflation rate, measured as the monthly change in the Consumer Price CANSIM 0.0017 0.0036 0.0681
Index

M2 CR The money su.pply growth, defined as the monthly change in the M2 CANSIM 0.0048  0.0039 0.1754
money supply index

MANU_ SALES GR The growth in manufacturers’ sales CANSIM -0.0019  0.0485 -0.6332

RET30 TBILL Elllllz one-month return on three-month Government of Canada Treasury CFMRC 00025  0.0021 13663
The excess return on the S&P/TSX Composite Index over a risk-free

SPTSX RP asset, measured as the difference between the index’s total return and the CFMRC 0.0036  0.0424 -0.9772
vield on short-term Government of Canada Treasury bills.
The 30-day volatility of the S&P/TSX 300 index (SPTSXVOL30),

SPTSXVOL30 computed as the annualized standard deviation of daily log price changes Bloomberg 13.62 7.8884 2.3945
(Bloomberg, item RK002); TSX wvolatility30day Bloomberg

TERM__SPREAD The difference between long-term and short-term government hond yields. CFMRC 0.0026  0.0244 -0.0134

TSX NET ISSUE Builds on Welch and Goyal 2008 and captures the extent of aggregate CFMRC 185519 16.5727 0.8307

corporate equity financing activity in the market. We compute firm-level
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TSX_ VOLUME GR

UNEMPLOYMENT
X RATE

net issuance as the change in market capitalization not explained by stock
returns. The market-level measure (T'SX__EQUITY_ISSUE) is defined as
the ratio of the 12-month moving sum of firm-level net equity issuances
to the aggregate market capitalization in the current month.

The monthly growth rate in the total dollar trading volume on the
Toronto Stock Exchange (TSX), capturing fluctuations in market trading
activity.

The unemployment rate

The Canada-U.S. exchange rate, measured as the number of Canadian
dollars per U.S. dollar

0.0229 0.177

CANSIM 7.5436 14571

1.2572  0.1711

0.3802

0.876

0.002

Calendar Anomalies

DECEMBER EFFECT
JANUARY EFFECT

A December dummy, set to 1 in December and 0 otherwise.
A January dummy, set to 1 in January and 0 otherwise, which accounts
for the well-documented January Effect

CFMRC
CFMRC
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Table 2: In-Sample Coefficient Estimates with Two-Way Clustered Standard Errors

Panel A of this table reports selected in-sample coefficients for OLS and Elastic-Net regressions with two-way clustered SEs.
Panel B reports two-sided Diebold—Mariano tests of squared-error loss differentials between each model and the OLS
benchmark, with Newey—West (11-lag) standard errors to account for serial correlation. Negative HAC-adjusted t-statistics
indicate that the challenger’s forecast errors are significantly lower than OLS’s (i.e. it “beats” the benchmark), while a positive

t-stat would imply the opposite.

Panel A: In-Sample Coefficient Estimates with Two-Way Clustered Standard Errors

Predictor Estimate Std. Error t-stat p-value
OLS
(Intercept) 0.0275496 0.00439455 6.269046 3.654E-10
LOG_ME -0.0041938 0.00078598 -5.335744 9.545E-08
BE_ME 0.0008192 0.00127544 0.6422875 0.5206886
RET_12_1 0.0050575 0.00185447 2.7271952 0.0063891
Elastic-Net
(Intercept) 0.0275496 0.00439455 6.269046 3.654E-10
LOG_ME -0.0041938 0.00078598 -5.335744 9.545E-08
BE_ME 0.0008192 0.00127544 0.6422875 0.5206886
RET _12_1 0.0050575 0.00185447 2.7271952 0.0063891
Panel B:
LASSO ENET RF XGB NN1 NN2 NN3 NN4
DM_t_HAC -21.1144 -21.5397 1.311228 -14.1739 -6.64468 -12.106 -12.89 -13.305 -12.592
p_val_HAC 5.90E-99 6.60E-103 0.189781 1.33E-45 3.04E-11 9.81E-34 5.14E-38 2.16E-40 2.34E-36
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Table 3. Out-of-Sample Forecast Performance across Predictive Models

This table reports in column 1 the root mean squared error (RMSE) and out-of-sample R%)OS in column 2 for
a set of machine learning and linear models.

Model RMSE R3os
enet 0.12134 0.061999
lasso 0.12135 0.06184
NN4 0.121214 0.060363
NN3 0.121533 0.059951
NN2 0.121889 0.052957

rf 0.122031 0.052517
NN1 0.122079 0.050731
pls 0.12251 0.043934
ols 0.122553 0.043295
xgh 0.122975 0.036963
OLS3 0.194 0.164

Figure 1. Comparative Out-of-Sample Performance of Predictive Models
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Table 4. Cross-Sectional Variation in Out-of-Sample Predictive Performance ( R%;)
This table evaluates the out-of-sample predictive performance (R%,g) of various return forecasting models across firm size

(small vs. large Panel A) and investment style (growth vs. value stocks, Panel B).

Panel A: Size Effect

enet lasso NN3 NN4 NN2 rf xgh NN1 pls ols
Small 0.127782 0.127677 0.125202 0.120013 0.119163 0.115684 0.115096 0.114191 0.11416 0.11358
Large 0.047999 0.047823 0.043038 0.052344 0.037575 0.037539 0.014481 0.036972 0.02837 0.02772
gap_pp 7.978377 7.985429 8.216407 6.766906 8.158831 7.814406 10.06153 7.721933 8.57851 8.58643
Panel B: Investment Style
Model enet lasso NN3 NN4 NN2 rf xgb NN1 pls ols
Value 0.257661 0.249942 0.249807 0.248833 0.246253 0.239226 0.233242 0.232855 0.231058 0.224672
Growth -0.10303 -0.09292 -0.09306 -0.09837 -0.10999 -0.10158 -0.10938 -0.11022 -0.10189 -0.11511
gap_pp 36.06913 34.28623 34.28713 34.7199 35.62396 34.08023 34.26256 34.30732 33.29439 33.97873
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Table 5. Predictive Performance at the Annual Horizon

This table reports out-of-sample root mean squared error (RMSE) and R%,g for one-year-ahead return forecasts across ten
models, including neural networks (NN1-NN4), tree-based learners (RF, XGB), and linear benchmarks (OLS, PLS, LASSO,
Elastic Net). Panel A reports results for the full sample. Panel B presents performance conditional on firm size (small vs.

large market capitalization). Panel C evaluates models by investment style (value vs. growth).

Panel A: Full Sample

enet lasso NN3 NN4 NN2 rf xgb NN1 pls ols
RMSE 0.439613 0.44075 0.442449 0.444421 0.445967 0.454591 0.46221 0.46232 0.46989 0.46999
R2 0.062004 0.056166 0.048169 0.042936 0.031854 -0.00204 -0.0296 -0.0301 -0.0634 -0.0639
Panel B: Size Effect

enet lasso NN3 NN4 NN2 rf xgb NN1 pls ols
Small 0.091897 0.075314 0.06754 0.061246 0.059302 0.053178 0.025241 0.024778 0.000251 -0.00011
Large 0.051847 0.054833 0.048516 0.0434 0.028864 -0.02544 -0.05603 -0.05646 -0.09464 -0.09521
gap_ pp 4.005031 2.048129 1.902406 1.784554 3.043871 7.861722 8.127026 8.123557 9.489304 9.509247
Panel C: Investment Style
Model enet lasso NN3 NN4 NN2 rf xgh NN1 pls ols
Value 0.218078 0.211501 0.206039 0.190845 0.177026 0.153965 0.09108 0.09021 0.05235 0.05105
Growth -0.09464 -0.10082 -0.07071 -0.09191 -0.09142 -0.12239 -0.1143 -0.1142 -0.1364 -0.1355
gap_pp 31.27184 31.23224 27.6754 28.27509 26.8446 27.63519 20.5391 20.4425 18.8738 18.6551
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Figure 2. Heatmap: Macroeconomic Variable Importance

Macroeconomic Variable Importance Heatmap
Normalized importance scores (0-1 scale)
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Table 6. Top 15 Firm-Level Predictors of One-Year Excess Returns across Models

This table reports the 15 most influential firm characteristics for each forecasting model, based on normalized importance scores averaged across
rolling windows.

rank ENET LASSO NN1 NN2 NN3 NN4 XGB rf

1 ivol_capm_60m ivol capm_60m Sale nwc CHCSHO 3M turnover 126d Sale nwc bidaskhl 21d bidaskhl 21d
2 bidaskhl 21d bidaskhl 21d turnover 126d O score Sale nwc turnover_ 126d  ivol_capm_60m ivol capm_ 60m
3 Sale nwc Sale nwc EQNPO GRIA turnover 126d CHCSHO 3M CHCSHO 3M RET 36 1 RET 36 1
4 RET 12 1 RET 12 1 Nwc at Sale nwc RET 3 1 RET 3 1 Intan grla ebitda sale
5 Intan_ grla Intan_ grla CHCSHO 3M Nwe_ at O score RET 36 1 Roe be std RET 12 1
6 Ap_ turnover Ap__turnover div_grla EQNPO_GRIA EQNPO_GRIA O _score Fef me Roe_be std
7 Debt bev Debt bev RET 3 1 ebitda sale Nwc at Nwc at Div_me Fcef me

8 turnover 126d turnover 126d O score Int debt 7, score div grla AT GR1 beta 60m
9 7 score 7 score AT GR1 Cash_ grla resff3 12 1 EQNPO_GRIA Sga_ grl O _score
10 EQNPO_GRIA EQNPO_GRIA Eqnetis_grla Sga_ grl ebitda_ sale 7,_score tangibility Intan_ grla
11 tangibility tangibility Roe be std 7 score AT GR1 Emp grl RET 12 1 Nwe at
12 RET 3 1 RET 3 1 Int debt RET 3 1 RET 36 1 beta 60m Emp grl AT GR1
13 Div_me Div_me resff3 12 1 Emp_grl Eqnetis_grla AT GR1 7. score turnover 126d
14 RET 36 1 RET 36 1 ebitda sale TSX NET ISSUE div__grla Int_debt beta_ 60m 7. score
15 div_grla div_grla 7. score SPTSX RP SPTSX RP SPTSX RP Sale nwec Emp_ grl
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Table 7: Unconditional and Conditional Superior Predictive Ability (SPA) Test Results

This table summarizes model comparisons based on the unconditional SPA (USPA) test of Hansen (2005) and the conditional SPA (CSPA) test of Li
et al. (2020), all evaluated using squared-error loss over the full sample. The first row summarizes USPA test results, indicating how often each
model is significantly outperformed by an alternative across 55 one-versus-one comparisons at the 5% level. The next 13 rows report
CSPA results, where predictive losses are evaluated within macroeconomic regimes. Each cell shows how many times the corresponding
model is rejected in favor of a competing model (out of 10) under a given regime. The final row aggregates total CSPA rejections across
all 13 regimes (maximum possible: 260). Lower values indicate greater statistical robustness.

METRIC NN1 NN2 NN3 NN4 ENET LASSO OLS OLS3 PLS RF XGB

uspa__rejections 3 4 4 6 5 5 6 6 7 2 8
regime_log_ EPU 7 2 3 4 10 10 8 8 8 0 18
regime_ CAP_UTI_GR 2 1 2 4 10 10 9 9 9 5 18
regime_ CLI_GR 4 2 1 4 9 9 8 8 9 1 18
regime_FISHER,_ PRICE_GR 4 2 0 4 7 7 5 1 16
regime_ INFLATION 4 4 4 9 11 11 12 12 12 3 20
regime_ M2 GR 3 2 2 5 8 8 9 9 7 3 15
regime_ MANU_SALES_GR 6 3 5 9 11 11 12 12 6 21
regime_ RET30_TBILL 6 3 2 5 5 18
regime_ SPTSXVOL30 4 1 1 3 1 19
regime_ TERM__SPREAD 4 4 4 9 10 10 12 12 11 2 18
regime_TSX_VOLUME_GR 5 1 2 5 10 4 15
regime_ UNEMPLOYMENT 5 3 2 5 10 6 19
regime_X_RATE 3 3 0 4 11 6 2 16
total__cspa_ rejections 57 31 28 70 120 120 120 123 114 39 231
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Figure 3: Size-Based Decomposition of Predictive Signals in the XGBoost
Model

Panel A: Small — Large permutation impact (top 15 variables)
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Panel B: Small — Large permutation impact by economic theme
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Table 8. Portfolio Performance Based on Predicted Monthly Returns (Jan
2012-Dec 2023)

This table reports backtested performance of monthly rebalanced portfolios sorted into

deciles based on one-month-ahead predicted total returns. For each of ten forecasting

models, we report results for: (i) a value-weighted long—short portfolio (top-bottom decile),

(ii) an equal-weighted long—short portfolio, and (iii) a long-only portfolio of the top decile.

Performance metrics include average monthly return (%), monthly volatility (%),

annualized Sharpe ratio, skewness, Newey-West t-statistic, maximum drawdown (%), and

worst monthly return. The sample covers January 2012 to December 2023.

Model ols lasso

Long-Short Long-Short
Strategy Long-Short 01(13“7;01" Long-Only Long-Short Or(lEg]W;Or Long-Only
Avg 0.435599 0.549422 1.18975 0.739377 0.8226 1.530304
Std 5.064644 4.794009 7.280027 5.187392 4.955132 7.15459
Sharpe 0.29794 0.397007 0.566126 0.49375 0.575074 0.740941
Skew 0.337616 0.351651 0.416236 0.433592 0.531367 0.644688
NW__tstat 1.028528 1.370521 1.954346 1.704494 1.985236 2.55783
Model enet rf

Long-Short Long-Short
Strategy Long-Short Ol(lEg)“T)OY Long-Only Long-Short OIZEW)OY Long-Only
Avg 0.741863 0.827843 1.531891 0.81449 0.943474 1.456139
Std 5.198507 4.969048 7.157872 4.417631 4.424014 6.762365
Sharpe 0.494351 0.577119 0.741369 0.638685 0.738761 0.745925
Skew 0.465333 0.563263 0.648735 0.884759 1.140327 0.252205
NW__tstat 1.706569 1.992295 2.559309 2.204829 2.550306 2.575035
Model xgb pls

Long-Short Long-Short
Strategy Long-Short Ol(liwior Long-Only Long-Short OI(IEVV;Or Long-Only
Avg 1.053095 1.189423 1.606937 0.46843 0.612037 1.158568
Std 4.878962 4.52226 7.042709 5.010269 4.776396 7.252679
Sharpe 0.747706 0.911111 0.790405 0.323873 0.443882 0.553368
Skew 0.159896 0.19318 0.435141 0.378309 0.401366 0.458976
NW__tstat 2.581183 3.145283 2.728587 1.118053 1.532343 1.910301
Model NN1 NN2

Long-Short Long-Short
Strategy Long-Short O?i\v;or Long-Only Long-Short OIEEW;OY Long-Only
Avg 0.92425 0.98282 1.494611 0.280399 0.217911 1.225918
Std 4.629584 4.394408 7.160244 4.53958 4.397355 6.762025
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Sharpe 0.691573 0.774755 0.723088 0.213969 0.171664 0.628023
Skew 0.46672 0.183805 0.622726 0.098789 -0.28918 0.691765
NW__tstat 2.387405 2.67456 2.496199 0.738652 0.592607 2.168021
Model NN3 NN4

Strategy Long-Short LO?E_VS\/};Oft Long-Only Long-Short LOIEE_VSV};Oﬁ Long-Only
Avg 0.845313 0.835909 1.363991 0.313619 0.339524 0.968938
Std 4.971174 4.740617 7.678023 4.719472 4.763638 7.219239
Sharpe 0.589046 0.610822 0.615393 0.230197 0.246901 0.464938
Skew 0.447628 0.32326 0.854872 0.478444 0.317664 0.509699
NW__tstat 2.033468 2.108643 2.124422 0.794671 0.852336 1.605031
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Figure 4. Sharpe Ratios of Long—Short Portfolios across Forecasting Models

Top-Decile Long-Only Returns (Zoomed +10%)
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Table 9. Annual Portfolio Performance Based on One-Year-Ahead Return

Forecasts

This table reports the results of an annual backtest evaluating the predictive power of each

model’s one-year-ahead return forecasts. Portfolios are rebalanced every January from 2012

to 2023 based on predicted returns and held for 12 months. For each model and strategy—

value-weighted long—short, equal-weighted long—short, and long-only top decile—we report

the average annual return (Avg, %), annualized volatility (Std, %), Sharpe ratio, and

Newey—West t-statistic (using 11-month lags). The results benchmark model efficacy across

horizon-relevant investment implementations.

Model enet lasso

Long-Short Long-Short
Strategy o?{iwgor Long-Short (EW)  Long-Only o?éw)or Long-Short (EW)  Long-Only
Avg 18.72149 22.13005 26.85594 18.92345 22.14987 26.98488
Std 27.78043 26.59831 37.32658 28.12048 26.57046 37.72341
Sharpe 0.568246 0.734038 0.590676 0.566697 0.735819 0.585781
Skew 25.82541 17.84663 20.77017 25.25983 17.05399 20.77017
NW__tstat 4.604931 5.309338 4.912317 4.587324 5.359944 4.876368
Model nnl nn2

Long-Short Long-Short
Strategy m(l;gfvv;or Long-Short (EW)  Long-Only or(l\gfw;or Long-Short (EW)  Long-Only
Avg 13.20897 15.7019 21.5695 17.0512 18.35683 22.71778
Std 21.6907 20.61262 35.16769 24.80303 23.37541 35.81436
Sharpe 0.524469 0.684048 0.483626 0.590763 0.69544 0.508119
Skew 19.97142 14.95767 27.97314 23.30898 18.91023 28.45517
NW __tstat 4.496086 5.455502 4.786551 5.442424 6.278412 4.486378
Model nn3 nn4

Long-Short Long-Short
Strategy Ol(l;gfvv;or Long-Short (EW)  Long-Only Or(l\gfw;or Long-Short (EW)  Long-Only
Avg 20.32535 22.11019 26.04654 18.00878 19.91413 24.94937
Std 21.07325 20.87246 32.9453 29.81789 28.20777 41.14497
Sharpe 0.891371 0.986988 0.683703 0.489901 0.600712 0.458748
Skew 4.908218 4.133957 14.86534 27.57105 21.88901 36.86851
NW__tstat 5.024181 5.457084 4.114493 2.839982 3.267567 3.102701
Model ols pls

Long-Short Long-Short
Strategy ong-sHot Long-Short (EW)  Long-Only ong-sHot Long-Short (EW)  Long-Only

(VW)
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Avg 16.582 19.7709 24.63925 16.28321 19.44866 24.31278
Std 25.0708 24.03844 35.92022 24.58591 23.54643 35.0547
Sharpe 0.566031 0.734417 0.562564 0.568849 0.739158 0.572959
Skew 22.19451 15.66012 21.03396 20.32234 14.82506 19.86695
NW__tstat 4.369733 4.966779 4.442999 4.451163 5.169279 4.607469
Model rf xgb

Strategy Lo?;g/—vs\;l)ort Long-Short (EW)  Long-Only Lo?é_\;l;ort Long-Short (EW)  Long-Only
Avg 13.9633 17.70423 23.09565 15.87037 17.12981 24.26346
Std 24.07486 21.87753 34.05067 22.80627 22.21803 34.65966
Sharpe 0.495657 0.734301 0.5703 0.611969 0.689671 0.583421
Skew 10.97327 3.598918 12.51025 14.72188 14.92981 25.24476
NW__tstat  3.124535 4.008527 4.033743 6.310758 6.293569 5.69015
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Table 10. Annual Portfolio Performance by Investment Style

This table reports the performance of annual long-only portfolios constructed separately for growth (Panel A)
and value (Panel B) stocks, based on each model’s one-year-ahead return forecasts. At the start of each year
from 2012 to 2023, stocks are ranked by forecasted return and sorted into style terciles based on book-to-market
ratios. We focus on the top decile within the growth (bottom 30%) and value (top 30%) universes. Each portfolio
is held for 12 months. Reported metrics include average annual return (Avg, %), annualized standard deviation
(Std, %), Sharpe ratio, skewness, and the Newey-West t-statistic (11-month lag). All returns are value-
weighted.

Panel A: Growth Stocks

Model Strategy Avg Std Sharpe Skew NW__tstat
enet Long-Only 970073  7.413553 0.453282  0.66875 1.564793
lasso Long-Only 986977  7.403155 0.461828  0.66385 1.594296
NN1 Long-Only 810595  7.567602 0.371053  0.103873 1.280928
NN2 Long-Only (598256  6.965887 0.29751  0.408386 1.027046
NN3 Long-Only (856025 6.860097 0.432262  0.440278 1.492226
NN4 Long-Only 098722  6.777942 0.050455  0.163699 0.174178
ols Long-Only 976871  7.361076 0.459713  0.333759 1.586991
pls Long-Only 857633  7.555786 0.393199  0.360549 1.357378
rf Long-Only (750367  7.684258 0.338269  0.022199 1.167752
xgb Long-Only 990287  7.440906 0.568103  -0.27105 1.961

Panel B: Value stocks

Model Strategy Avg Std Sharpe Skew NW__tstat
enet Long-Only 9997327  9.313985 0.854433  0.42563 2.949621
lasso Long-Only 2 99662 9.311966 0.854355  0.426985 2.949352
NN1 Long-Only 2 985229 9.064037 1.140897  0.653598 3.938535
NN2 Long-Only 71966438  9.388487 0.725563  0.667091 2.504745
NN3 Long-Only 1969547  9.770599 0.69829  0.604966 2.410593
NN4 Long-Only 1 63676 9.564984 0.610885  0.680892 2.10886
ols Long-Only 2372261  9.341232 0.879729  0.415592 3.036947
pls Long-Only 2468023  9.408048 0.908741  0.447534 3.137101
rf Long-Only 2646394  9.269531 0.988079  0.32768 3.414094
xgb Long-Only 9345850  9.364822 0.867747  0.382923 2.995582
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Table 11. Annual Portfolio Performance by information aysmmtry quality

This table reports the performance of annual long-only top-decile portfolios formed each January from 2012 to 2023 using one-
year-ahead return forecasts from various models. We evaluate conditional predictability by sorting the stock universe into two
subsamples based on: Information asymmetry (Panel A), proxied by the 21-day bid-ask spread (BIDASKHL_21D). Stocks
are classified each month into High and Low Asymmetry groups based on the cross-sectional median. Trading volume (Panel
B), proxied by the 21-day lagged trading volume. Stocks are similarly split into High and Low Volume groups. Within each
group, we form value-weighted long-only portfolios of the top forecast decile and report average monthly return (Avg, %),
annualized volatility (Std, %), Sharpe ratio, skewness, and the Newey—West t-statistic (11-month lag). The results highlight
how market frictions and liquidity conditions modulate model effectiveness.

Panel A: Information Asymmrty

Model Strategy Avg Std Sharpe Skew NW__tstat Group

enet Long-Only 0.815757 6.58982 0.428823 0.173923 1.480355 Low Asymmetry
enet Long-Only 2.113352 8.163209 0.896812 0.486136 3.095919 High Asymmetry
lasso Long-Only 0.791649 6.612389 0.414729 0.173321 1.431703 Low Asymmetry
lasso Long-Only 2.099719 8.143631 0.893169 0.493747 3.083343 High Asymmetry
NN1 Long-Only 1.092829 6.186741 0.6119 0.17542 2.112365 Low Asymmetry
NN1 Long-Only 1.605729 8.263441 0.673135 0.631076 2.323754 High Asymmetry
NN2 Long-Only 0.862787 6.101706 0.489828 0.883847 1.690952 Low Asymmetry
NN2 Long-Only 1.485923 8.208349 0.627092 0.640711 2.164807 High Asymmetry
NN3 Long-Only 0.781206 6.505993 0.415951 -0.39022 1.435921 Low Asymmetry
NN3 Long-Only 1.452501 8.378382 0.600547 0.622252 2.073171 High Asymmetry
NN4 Long-Only 0.956989 6.137755 0.540117 0.107445 1.864558 Low Asymmetry
NN4 Long-Only 0.981008 8.350729 0.406948 0.49657 1.404841 High Asymmetry
ols Long-Only 0.789063 6.611921 0.413404 0.196755 1.427128 Low Asymmetry
ols Long-Only 1.301924 8.09228 0.557321 0.625493 1.923949 High Asymmetry
pls Long-Only 0.785495 6.573599 0.413934 0.149642 1.428957 Low Asymmetry
pls Long-Only 1.328633 8.121734 0.566692 0.522632 1.956298 High Asymmetry
rf Long-Only 0.675737 5.810652 0.40285 -0.56894 1.390693 Low Asymmetry
rf Long-Only 1.891752 7.719472 0.848921 0.349364 2.930593 High Asymmetry
xgb Long-Only 1.181142 6.522524 0.627303 -0.46783 2.157951 Low Asymmetry
xgb Long-Only 1.926235 7.395874 0.902215 0.33797 3.114573 High Asymmetry
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Panel B: Trading Volume

Model
enet
enet
lasso
lasso
NN1
NN1
NN2
NN2
NN3
NN3
NN4
NN4
ols
ols
pls
pls
rf

rf
xgb
xgh

Strategy

Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only

Avg
2.187959
1.574268
2.202908
1.564671
0.86284
1.532862
-0.07465
1.491467
1.055365
1.207392
1.302944
1.190717
1.939541
1.266292
1.805671
1.387541
1.413671
1.489649
2.398334
1.74607

Std
13.21769
7.53666
13.21251
7.540182
11.2814
7.149638
12.78333
6.882727
13.07236
7.740494
12.85822
7.503728
12.46605
7.496179
12.47605
7.553093
12.98841
7.032008
12.03343
7.227946

Sharpe
0.573422
0.723587
0.577566
0.718839
0.264946
0.742693
-0.02023
0.750661
0.279666
0.540344
0.351023
0.549695
0.538965
0.585174
0.501363
0.636373
0.377036
0.73383
0.690416
0.83683

Skew
0.988521
0.61136
0.986931
0.61395
1.061254
0.729751
1.357902
0.67858
0.910584
0.944563
1.168405
0.59782
0.933155
0.380762
0.954844
0.415264
0.849691
0.330173
1.22845
0.499251

NW__tstat
1.90907
2.497921
1.922867
2.481533
0.882075
2.56388
-0.06735
2.591385
0.93108
1.865342
1.168646
1.897624
1.794355
2.0201
1.669167
2.196847
1.255251
2.533281
2.298575
2.888854

volume__group
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume
High Volume
Low Volume

76



Figure 5. Annual Portfolio Performance by information aysmmtry quality
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Table 12. Return Predictability Conditional on Anonymous Trading Activity

This table reports the performance of long-only top-decile portfolios sorted on predicted returns, conditional on two dimensions of anonymous trading:
Panel A splits the sample based on the level of net anonymous buying (NET_ANO_BUY_VOLUM), and Panel B based on the dispersion in broker-
level anonymous order flow (VOLATILITY_BROKER_VOLUM). For each month, stocks are ranked above and below the median of the relevant
proxy, and portfolios are constructed from the top decile within each subset. Reported statistics include average monthly return (Avg), annualized
volatility (Std), Sharpe ratio, return skewness, and Newey—West adjusted t-statistics. The results show that elevated anonymous buying and greater
broker-level dispersion significantly enhance return predictability, particularly for non-linear and interaction-rich models.

Panel A: Net Anonymous Buying

Model Strategy Avg Std Sharpe Skew NW__tstat model group

enet Long-Only 2.133751 8.40025 0.879918 0.406331 2.840015 enet High net ANO buy volume
enet Long-Only 1.474761 7.603962 0.67185 0.831419 2.31932 enet Low net ANO buy volume
lasso Long-Only 2.109819 8.402037 0.869864 0.416092 2.807565 lasso High net ANO buy volume
lasso Long-Only 1.467827 7.595477 0.669438 0.826256 2.310993 lasso Low net ANO buy volume
NN1 Long-Only 1.845217 7.892401 0.809895 0.604504 2.614011 NN1 High net ANO buy volume
NN1 Long-Only 1.467306 7.673394 0.662405 0.73969 2.286715 NN1 Low net ANO buy volume
NN2 Long-Only 1.776104 8.451384 0.728 0.876097 2.349685 NN2 High net ANO buy volume
NN2 Long-Only 1.06037 7.105806 0.516933 0.670663 1.784525 NN2 Low net ANO buy volume
NN3 Long-Only 1.942621 8.753044 0.768811 0.82283 2.481407 NN3 High net ANO buy volume
NN3 Long-Only 1.303928 7.966342 0.567003 0.862469 1.957372 NN3 Low net ANO buy volume
NN4 Long-Only 1.423307 8.475588 0.581727 0.505376 1.877578 NN4 High net ANO buy volume
NN4 Long-Only 0.965735 7.610519 0.439576 0.71321 1.517479 NN4 Low net ANO buy volume
ols Long-Only 1.649505 8.637099 0.661571 0.321886 2.135281 ols High net ANO buy volume
ols Long-Only 1.203475 7.746783 0.538154 0.768416 1.857781 ols Low net ANO buy volume
pls Long-Only 1.583398 8.560724 0.640723 0.434756 2.067991 pls High net ANO buy volume
pls Long-Only 1.05974 7.765875 0.472715 0.817696 1.631878 pls Low net ANO buy volume
rf Long-Only 1.914885 7.59455 0.873436 0.735433 2.819095 rf High net ANO buy volume
rf Long-Only 1.801671 7.558078 0.825762 0.475767 2.850643 rf Low net ANO buy volume
xgb Long-Only 2.021443 8.189639 0.855042 0.57448 2.759726 xgb High net ANO buy volume
xgb Long-Only 1.706651 7.421448 0.796612 0.418186 2.750014 xgb Low net ANO buy volume
Panel B: The Dispersion in Broker-Level Anonymous Order Flow

Model Strategy Avg Std Sharpe Skew NW__tstat model group
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enet
enet
lasso
lasso
NN1
NN1
NN2
NN2
NN3
NN3
NN4
NN4
ols
ols
pls
pls
rf

rf
xgb
xgh

Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only
Long-Only

1.749672
1.429367
1.756061
1.439218
1.605133
1.660819
1.210014
1.475537
1.476274
1.866488
1.244981
1.366564
1.499162
1.598408
1.362165
1.511662
1.396808
2.091438
1.323103
2.391055

7.598932
8.260424
7.590009
8.265999
7.369122
8.124862
7.229609
8.272993
7.767243
8.896007
7.445965
8.604659
7.76266
8.765681
7.62103
8.63166
7.287161
7.504632
7.718013
7.942981

0.797617
0.599421
0.801471
0.603145
0.754546
0.708104
0.579784
0.617843
0.658401
0.72681
0.579205
0.550157
0.669004
0.631674
0.619166
0.606668
0.664002
0.965398
0.593853
1.04279

0.513023
0.770145
0.513441
0.766164
0.458277
0.677582
0.712727
0.944776
0.7725
0.857149
0.473816
0.638208
0.272335
0.702253
0.327716
0.783327
0.093993
0.991879
0.206296
0.932135

2.753485
1.934686
2.766789
1.946706
2.604799
2.28547
2.001494
1.994144
2.272893
2.345844
1.999496
1.775683
2.309494
2.038784
2.137445
1.958075
2.292225
3.115909
2.050061
3.365698

enet
enet
lasso
lasso
NN1
NN1
NN2
NN2
NN3
NN3
NN4
NN4
ols
ols
pls
pls
rf
rf
xgb
xgb

Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
Low Heterogeneity
High Heterogeneity
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Figure 6. Impact of Anonymous Trading Intensity and Dispersion on Portfolio Returns
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